Radiation detectors using CZT can operate in direct-conversion (or photoconductive) mode at room temperature, unlike some other materials (particularly germanium) which require cooling. Their relative advantages include high sensitivity for X-rays and gamma rays, due to the high atomic numbers of Cd and Te, and better energy resolution than scintillator detectors.[2] CZT can be formed into different shapes for different radiation-detecting applications, and a variety of electrode geometries, such as coplanar grids [3] and small pixel detectors,[4] have been developed to provide unipolar (electron-only) operation, thereby improving energy resolution. A 1 cm3 CZT crystal has a sensitivity range of 30 keV to 3 MeV with a 2.5% FWHM energy resolution at 662 keV.[5] Pixelated CZT with a volume of 6 cm3 can achieve 0.71% FWHM energy resolution at 662 keV and perform Compton imaging.[6]
^Capper, Peter (1994). Properties of Narrow Gap Cadmium-based Compounds. INSPEC. p. 618. ISBN0-85296-880-9.
^Wilson, Matthew David; Cernik, Robert; Chen, Henry; Hansson, Conny; Iniewski, Kris; Jones, Lawrence L.; Seller, Paul; Veale, Matthew C. (2011). "Small pixel CZT detector for hard X-ray spectroscopy". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 652 (1): 158–161. Bibcode:2011NIMPA.652..158W. doi:10.1016/j.nima.2011.01.144.
^Zhang, Feng; Herman, Cedric; He, Zhong; De Geronimo, Gianluigi; Vernon, Emerson; Fried, Jack (2012). "Characterization of the H3D ASIC Readout System and 6.0 cm³ 3-D Position Sensitive CdZnTe Detectors". IEEE Transactions on Nuclear Science. 59 (1): 236. Bibcode:2012ITNS...59..236Z. doi:10.1109/TNS.2011.2175948. S2CID16381112.