Brouwer–Heyting–Kolmogorov interpretation

In mathematical logic, the Brouwer–Heyting–Kolmogorov interpretation, or BHK interpretation, of intuitionistic logic was proposed by L. E. J. Brouwer and Arend Heyting, and independently by Andrey Kolmogorov. It is also sometimes called the realizability interpretation, because of the connection with the realizability theory of Stephen Kleene. It is the standard explanation of intuitionistic logic.[1]

The interpretation

The interpretation states what is intended to be a proof of a given formula. This is specified by induction on the structure of that formula:

  • A proof of is a pair where is a proof of and is a proof of .
  • A proof of is either where is a proof of or where is a proof of .
  • A proof of is a function[clarify] that converts a proof of into a proof of .
  • A proof of is a pair where is an element of and is a proof of .
  • A proof of is a function that converts an element of into a proof of .
  • The formula is defined as , so a proof of it is a function that converts a proof of into a proof of .
  • There is no proof of , the absurdity or bottom type (nontermination in some programming languages).

The interpretation of a primitive proposition is supposed to be known from context. In the context of arithmetic, a proof of the formula is a computation reducing the two terms to the same numeral.

Kolmogorov followed the same lines but phrased his interpretation in terms of problems and solutions. To assert a formula is to claim to know a solution to the problem represented by that formula. For instance is the problem of reducing to ; to solve it requires a method to solve problem given a solution to problem .

Examples

The identity function is a proof of the formula , no matter what P is.

The law of non-contradiction expands to :

  • A proof of is a function that converts a proof of into a proof of .
  • A proof of is a pair of proofs <a, b>, where is a proof of P, and is a proof of .
  • A proof of is a function that converts a proof of P into a proof of .

Putting it all together, a proof of is a function that converts a pair <a, b> – where is a proof of , and is a function that converts a proof of into a proof of – into a proof of . There is a function that does this, where , proving the law of non-contradiction, no matter what P is.

Indeed, the same line of thought provides a proof for the modus ponens rule as well, where is any proposition.

On the other hand, the law of excluded middle expands to , and in general has no proof. According to the interpretation, a proof of is a pair <a, b> where a is 0 and b is a proof of , or a is 1 and b is a proof of . Thus if neither nor is provable then neither is .

Definition of absurdity

It is not, in general, possible for a logical system to have a formal negation operator such that there is a proof of "not" exactly when there isn't a proof of ; see Gödel's incompleteness theorems. The BHK interpretation instead takes "not" to mean that leads to absurdity, designated , so that a proof of is a function converting a proof of into a proof of absurdity.

A standard example of absurdity is found in dealing with arithmetic. Assume that 0 = 1, and proceed by mathematical induction: 0 = 0 by the axiom of equality. Now (induction hypothesis), if 0 were equal to a certain natural number n, then 1 would be equal to n + 1, (Peano axiom: Sm = Sn if and only if m = n), but since 0 = 1, therefore 0 would also be equal to n + 1. By induction, 0 is equal to all numbers, and therefore any two natural numbers become equal.

Therefore, there is a way to go from a proof of 0 = 1 to a proof of any basic arithmetic equality, and thus to a proof of any complex arithmetic proposition. Furthermore, to get this result it was not necessary to invoke the Peano axiom that states that 0 is "not" the successor of any natural number. This makes 0 = 1 suitable as in Heyting arithmetic (and the Peano axiom is rewritten 0 = Sn → 0 = S0). This use of 0 = 1 validates the principle of explosion.

Definition of function

The BHK interpretation will depend on the view taken about what constitutes a function that converts one proof to another, or that converts an element of a domain to a proof. Different versions of constructivism will diverge on this point.

Kleene's realizability theory identifies the functions with the computable functions. It deals with Heyting arithmetic, where the domain of quantification is the natural numbers and the primitive propositions are of the form x = y. A proof of x = y is simply the trivial algorithm if x evaluates to the same number that y does (which is always decidable for natural numbers), otherwise there is no proof. These are then built up by induction into more complex algorithms.

If one takes lambda calculus as defining the notion of a function, then the BHK interpretation describes the correspondence between natural deduction and functions.

See also

Notes

References

  • Troelstra, A. (1991). "History of Constructivism in the Twentieth Century" (PDF).
  • Troelstra, A. (2003). "Constructivism and Proof Theory (draft)". CiteSeerX 10.1.1.10.6972.

Read other articles:

Pour les articles homonymes, voir Anne de Bavière. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne cite pas suffisamment ses sources (septembre 2019). Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références » En pr...

 

أم الصخر ام الصخر  - قرية -  تقسيم إداري البلد  إيران المحافظة محافظة خوزستان المقاطعة مقاطعة الفلاحية قسم القسم المركزي القسم الريفي قسم جفال الريفي إحداثيات 30°46′57″N 48°40′44″E / 30.7825°N 48.67889°E / 30.7825; 48.67889 السكان التعداد السكاني 109 نسمة (إحصاء 2006) معلوما

 

Film Titel Who We Love Produktionsland Irland Originalsprache Englisch Erscheinungsjahr 2021 Stab Regie Graham Cantwell Drehbuch Graham Cantwell,Katie McNeice Produktion Graham Cantwell,Alan Fitzpatrick,Edwina Forkin Musik Joseph Conlan Kamera Austin Ray, Westin Ray Besetzung Clara Harte: Lily Dean Quinn: Simon Amy-Joyce Hastings: Oonagh Venetia Bowe: Violet Paul Ronan: Dermot Aisling O’Neill: Yvette Amy Hughes: AJ Jimmy Smallhorne: Fran Danielle Galligan: Naomi Lynette Callaghan: Miss O’...

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Novembro de 2020) Ajude a melhorar este artigo sobre Arquitetura ilustrando-o com uma imagem. Consulte Política de imagens e Como usar imagens. Angra E é um sítio arqueológico subaquático integrante do Parque Arqueológico Subaquático da Baía de Angra do...

 

American Christian private school in Lansdale Calvary Baptist School is a private K-12 Baptist Christian school in Lansdale, Pennsylvania.[1][2] Background Calvary Baptist School was established in September 1968 when school leaders began offering classes for students in kindergarten and grades one through six. The total combined enrollment of the student body that year was 118. Over the years, classes were expanded to include students in upper grades so that, by 1973, Calvary...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Sekolah Tinggi Analis Bakti Asih adalah perguruan tinggi yang sejak tahun 200 telah menyelenggarakan pendidikan keanalisan. Penyelenggaraan dimulai dengan berdirinya Akademi Analis Kesehatan Bakti Asih pada tahun 1999. Salah satu bentuk kepercayaan pem...

Templo de Kedarnath, el yiotir-linga situado más al norte de la India. Un yiotir linga (‘lingam de luz’) es un templo donde el dios hinduista Shivá es adorado en la forma de un falo de piedra. En la India hay doce yiotir lingas tradicionales. Los nombres y la localización de estos lugares sagrados se hallan en el Shata-rudra-samjita (‘relación de los cien Rudras’) del Sivá-purana. La leyenda dice que si uno recita los nombres de los doce yiotir-lingas se libra de todos sus pecado...

 

District of London, England This article is about the area in London. For other uses, see Finchley (disambiguation). Human settlement in EnglandFinchleyBallards Lane, Church End, FinchleyFinchleyLocation within Greater LondonPopulation65,812 (2011 Census[1]OS grid referenceTQ255905• Charing Cross6.8 mi (10.9 km) SLondon boroughBarnetCeremonial countyGreater LondonRegionLondonCountryEnglandSovereign stateUnited KingdomPost townLONDONP...

 

Place in Styria, SloveniaGabrnoGabrnoLocation in SloveniaCoordinates: 46°9′10.53″N 15°15′38.67″E / 46.1529250°N 15.2607417°E / 46.1529250; 15.2607417Country SloveniaTraditional regionStyriaStatistical regionSavinjaMunicipalityLaškoArea • Total0.67 km2 (0.26 sq mi)Elevation469.2 m (1,539.4 ft)Population (2002) • Total53[1] Gabrno (pronounced [ˈɡaːbəɾnɔ]) is a settlement in the hills...

1973 film by P. Venu Prethangalude ThazhvaraPosterDirected byP. VenuWritten byP. VenuProduced byP. VenuStarringRaghavan, VijayasreeThikkurissy Sukumaran NairJose PrakashBahadoorMusic byG. DevarajanProductioncompanyAnupama FilmsDistributed byAnupama FilmsRelease date 28 September 1973 (1973-09-28) CountryIndiaLanguageMalayalam Prethangalude Thazhvara is a 1973 Indian Malayalam-language film, directed and produced by P. Venu. The film stars Raghavan, Bahadoor, Vijayasree, Jose Pr...

 

Andrija Radović Andrija Radović (Serbian Cyrillic: Андрија Радовић; 1872–1947) was a Montenegrin and Yugoslav politician and statesmen, former Prime Minister and leader of the People's and then Democratic Party, fighter for parliamentary democracy and chief proponent of Montenegro's unification with Serbia.[1][2] Youth Andrija Radović was born to father serdar (count) Jagoš in the village of Martinići, Danilovgrad into the Bjelopavlići clan, in the still ...

 

Japanese footballer Yuika Sugasawa菅澤 優衣香 Personal informationFull name Yuika SugasawaDate of birth (1990-10-05) October 5, 1990 (age 33)Place of birth Chiba, Chiba, JapanHeight 1.68 m (5 ft 6 in)Position(s) ForwardTeam informationCurrent team Urawa RedsNumber 9Youth career2006–2008 JFA Academy FukushimaSenior career*Years Team Apps (Gls)2008–2012 Albirex Niigata 60 (19)2013–2016 JEF United Chiba 79 (44)2017– Urawa Reds 94 (71)Total 233 (134)International ...

1973 video game Empire is the name of a computer game written for the PLATO system in 1973. It is significant for being quite probably the first networked multiplayer arena shooter-style game. It may also be the first networked multiplayer action game (although Maze War is another possibility for this distinction). Gameplay An Empire screenshot from the PCA vs CERL tournament held August 18, 1984 Although PLATO terminals had touch panels, they did not have mice, and all control in the game is...

 

Menteri Luar Negeri, Persemakmuran, dan Pembangunan Britania RayaSecretary of State for Foreign, Commonwealth and Development AffairsLambang Kerajaan yang dipakai oleh Pemerintah Britania RayaPetahanaDavid Cameronsejak 13 November 2023 (2023-11-13)Kantor Luar Negeri, Persemakmuran, dan PembangunanGelarThe Right Honourable(di Inggris dan Persemakmuran)His Excellency(di kalangan mancanegara)[1]Foreign Secretary (informal)AnggotaKabinetDewan PenasihatDewan Keamanan NasionalAtas...

 

Zaida Zaida dari Sevilla (1063-1107) merupakan seorang putri Muslim yang mengungsi dan menjadi seorang Wanita simpanan dan diduga adalah ratu Alfonso VI dari Kastilia.[1] Dari sumber Muslim Iberia ia dinyatakan sebagai menantu Al Mutamid, Raja Muslim Sevilla, istri putranya Abu al Fatah al Ma'Mun, Emir Cordoba,[2] (wafat 1091). Penulis kronik Kristen Iberia menyebutnya putri Al Mutamid,[3] namun penulis kronik Islam dianggap lebih tepercaya.[4] Dengan jatuhnya ...

В Википедии есть статьи о других людях с фамилией Росс. Кайла Росс Личная информация Пол женский Полное имя Кайла Бриана Росс Прозвище Могущественная мышь (англ. Mighty Mouse)[1] Страна  США Клуб Gym-Max Gymnastics Дата рождения 24 октября 1996(1996-10-24) (27 лет) Место рождения Гонолулу...

 

Offline website builder developed by Adobe Systems Adobe MuseDeveloper(s)Adobe SystemsInitial releaseMay 7, 2012 (2012-05-07)Stable releaseCC 2018 (2018.1.0.266)[1] / April 4, 2018; 5 years ago (2018-04-04) Written inFlash, Flex, AIROperating systemOS X and WindowsAvailable in19 languages[2]List of languagesAmerican English, British English, Brazilian Portuguese, Czech, Danish, Dutch, Finnish, French, German, Italian, Japanese, Korean, Norwegia...

 

Umbriacircoscrizione elettorale Stato Italia CapoluogoPerugia Elezioni perSenato della Repubblica ElettiSenatori Istituzione1948 Periodo 1948-1993Tipologiadi lista Periodo 1993-2005Tipologiaa collegi uninominali Periodo 2005-2017Tipologiadi lista Numero eletti7 Periodo 2017-2020Tipologiaa collegi uninominali e plurinominali Numero eletti7 Periodo 2020-Tipologiaa collegi uninominali e plurinominali Numero eletti3 Manuale La circoscrizione Umbria è una circoscrizione elettorale itali...

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Centre sportif Léonard-Grondin – news · newspapers · books · scholar · JSTOR (May 2009) (Learn how and when to remove this template message) The Centre sportif Léonard-Grondin after the 2010-2011 renovations The Centre sportif Léonard-Grondin (historically known as the Aréna...

 

2003 studio album by Miroslav VitoušUniversal SyncopationsStudio album by Miroslav VitoušReleasedSeptember 29, 2003[1]Recorded2002 & March 2003StudioUniversal Syncopation Studios, Italy (2002)Rainbow Studios, Oslo (2003)GenreJazzLength53:32LabelECMECM 1863ProducerManfred EicherMiroslav Vitouš chronology Atmos(1993) Universal Syncopations(2003) Universal Syncopations II(2007) Universal Syncopations is an album by Czech bassist Miroslav Vitouš recorded between 2002–200...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!