where is a real number. Some authors allow any real ,[1][2] whereas others require that not be 0 or 1.[3][4] The equation was first discussed in a work of 1695 by Jacob Bernoulli, after whom it is named. The earliest solution, however, was offered by Gottfried Leibniz, who published his result in the same year and whose method is the one still used today.[5]
When , the differential equation is linear. When , it is separable. In these cases, standard techniques for solving equations of those forms can be applied. For and , the substitution reduces any Bernoulli equation to a linear differential equation
For example, in the case , making the substitution in the differential equation produces the equation , which is a linear differential equation.
Solution
Let and
be a solution of the linear differential equation
Then we have that is a solution of
And for every such differential equation, for all we have as solution for .
Example
Consider the Bernoulli equation
(in this case, more specifically a Riccati equation).
The constant function is a solution.
Division by yields
The left side can be represented as the derivative of by reversing the product rule. Applying the chain rule and integrating both sides with respect to results in the equations
Bernoulli, Jacob (1695), "Explicationes, Annotationes & Additiones ad ea, quae in Actis sup. de Curva Elastica, Isochrona Paracentrica, & Velaria, hinc inde memorata, & paratim controversa legundur; ubi de Linea mediarum directionum, alliisque novis", Acta Eruditorum. Cited in Hairer, Nørsett & Wanner (1993).
Hairer, Ernst; Nørsett, Syvert Paul; Wanner, Gerhard (1993), Solving ordinary differential equations I: Nonstiff problems, Berlin, New York: Springer-Verlag, ISBN978-3-540-56670-0.