Bergman space
In complex analysis , functional analysis and operator theory , a Bergman space , named after Stefan Bergman , is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable . Specifically, for 0 < p < ∞ , the Bergman space A p (D ) is the space of all holomorphic functions
f
{\displaystyle f}
in D for which the p -norm is finite:
‖ ‖ -->
f
‖ ‖ -->
A
p
(
D
)
:=
(
∫ ∫ -->
D
|
f
(
x
+
i
y
)
|
p
d
x
d
y
)
1
/
p
<
∞ ∞ -->
.
{\displaystyle \|f\|_{A^{p}(D)}:=\left(\int _{D}|f(x+iy)|^{p}\,\mathrm {d} x\,\mathrm {d} y\right)^{1/p}<\infty .}
The quantity
‖ ‖ -->
f
‖ ‖ -->
A
p
(
D
)
{\displaystyle \|f\|_{A^{p}(D)}}
is called the norm of the function f ; it is a true norm if
p
≥ ≥ -->
1
{\displaystyle p\geq 1}
. Thus A p (D ) is the subspace of holomorphic functions that are in the space Lp (D ) . The Bergman spaces are Banach spaces , which is a consequence of the estimate, valid on compact subsets K of D :
sup
z
∈ ∈ -->
K
|
f
(
z
)
|
≤ ≤ -->
C
K
‖ ‖ -->
f
‖ ‖ -->
L
p
(
D
)
.
{\displaystyle \sup _{z\in K}|f(z)|\leq C_{K}\|f\|_{L^{p}(D)}.}
1
Thus convergence of a sequence of holomorphic functions in L p (D ) implies also compact convergence , and so the limit function is also holomorphic.
If p = 2 , then A p (D ) is a reproducing kernel Hilbert space , whose kernel is given by the Bergman kernel .
Special cases and generalisations
If the domain D is bounded , then the norm is often given by:
‖ ‖ -->
f
‖ ‖ -->
A
p
(
D
)
:=
(
∫ ∫ -->
D
|
f
(
z
)
|
p
d
A
)
1
/
p
(
f
∈ ∈ -->
A
p
(
D
)
)
,
{\displaystyle \|f\|_{A^{p}(D)}:=\left(\int _{D}|f(z)|^{p}\,dA\right)^{1/p}\;\;\;\;\;(f\in A^{p}(D)),}
where
A
{\displaystyle A}
is a normalised Lebesgue measure of the complex plane, i.e. dA = dz /Area(D ) . Alternatively dA = dz /π is used, regardless of the area of D .
The Bergman space is usually defined on the open unit disk
D
{\displaystyle \mathbb {D} }
of the complex plane, in which case
A
p
(
D
)
:=
A
p
{\displaystyle A^{p}(\mathbb {D} ):=A^{p}}
. In the Hilbert space case, given:
f
(
z
)
=
∑ ∑ -->
n
=
0
∞ ∞ -->
a
n
z
n
∈ ∈ -->
A
2
{\displaystyle f(z)=\sum _{n=0}^{\infty }a_{n}z^{n}\in A^{2}}
, we have:
‖ ‖ -->
f
‖ ‖ -->
A
2
2
:=
1
π π -->
∫ ∫ -->
D
|
f
(
z
)
|
2
d
z
=
∑ ∑ -->
n
=
0
∞ ∞ -->
|
a
n
|
2
n
+
1
,
{\displaystyle \|f\|_{A^{2}}^{2}:={\frac {1}{\pi }}\int _{\mathbb {D} }|f(z)|^{2}\,dz=\sum _{n=0}^{\infty }{\frac {|a_{n}|^{2}}{n+1}},}
that is, A 2 is isometrically isomorphic to the weighted ℓ p (1/(n + 1)) space .[ 1] In particular the polynomials are dense in A 2 . Similarly, if D =
C
{\displaystyle \mathbb {C} }
+ , the right (or the upper) complex half-plane, then:
‖ ‖ -->
F
‖ ‖ -->
A
2
(
C
+
)
2
:=
1
π π -->
∫ ∫ -->
C
+
|
F
(
z
)
|
2
d
z
=
∫ ∫ -->
0
∞ ∞ -->
|
f
(
t
)
|
2
d
t
t
,
{\displaystyle \|F\|_{A^{2}(\mathbb {C} _{+})}^{2}:={\frac {1}{\pi }}\int _{\mathbb {C} _{+}}|F(z)|^{2}\,dz=\int _{0}^{\infty }|f(t)|^{2}{\frac {dt}{t}},}
where
F
(
z
)
=
∫ ∫ -->
0
∞ ∞ -->
f
(
t
)
e
− − -->
t
z
d
t
{\displaystyle F(z)=\int _{0}^{\infty }f(t)e^{-tz}\,dt}
, that is, A 2 (
C
{\displaystyle \mathbb {C} }
+ ) is isometrically isomorphic to the weighted L p 1/t (0,∞) space (via the Laplace transform ).[ 2] [ 3]
The weighted Bergman space A p (D ) is defined in an analogous way,[ 1] i.e.,
‖ ‖ -->
f
‖ ‖ -->
A
w
p
(
D
)
:=
(
∫ ∫ -->
D
|
f
(
x
+
i
y
)
|
2
w
(
x
+
i
y
)
d
x
d
y
)
1
/
p
,
{\displaystyle \|f\|_{A_{w}^{p}(D)}:=\left(\int _{D}|f(x+iy)|^{2}\,w(x+iy)\,dx\,dy\right)^{1/p},}
provided that w : D → [0, ∞) is chosen in such way, that
A
w
p
(
D
)
{\displaystyle A_{w}^{p}(D)}
is a Banach space (or a Hilbert space , if p = 2 ). In case where
D
=
D
{\displaystyle D=\mathbb {D} }
, by a weighted Bergman space
A
α α -->
p
{\displaystyle A_{\alpha }^{p}}
[ 4] we mean the space of all analytic functions f such that:
‖ ‖ -->
f
‖ ‖ -->
A
α α -->
p
:=
(
(
α α -->
+
1
)
∫ ∫ -->
D
|
f
(
z
)
|
p
(
1
− − -->
|
z
|
2
)
α α -->
d
A
(
z
)
)
1
/
p
<
∞ ∞ -->
,
{\displaystyle \|f\|_{A_{\alpha }^{p}}:=\left((\alpha +1)\int _{\mathbb {D} }|f(z)|^{p}\,(1-|z|^{2})^{\alpha }dA(z)\right)^{1/p}<\infty ,}
and similarly on the right half-plane (i.e.,
A
α α -->
p
(
C
+
)
{\displaystyle A_{\alpha }^{p}(\mathbb {C} _{+})}
) we have:[ 5]
‖ ‖ -->
f
‖ ‖ -->
A
α α -->
p
(
C
+
)
:=
(
1
π π -->
∫ ∫ -->
C
+
|
f
(
x
+
i
y
)
|
p
x
α α -->
d
x
d
y
)
1
/
p
,
{\displaystyle \|f\|_{A_{\alpha }^{p}(\mathbb {C} _{+})}:=\left({\frac {1}{\pi }}\int _{\mathbb {C} _{+}}|f(x+iy)|^{p}x^{\alpha }\,dx\,dy\right)^{1/p},}
and this space is isometrically isomorphic, via the Laplace transform, to the space
L
2
(
R
+
,
d
μ μ -->
α α -->
)
{\displaystyle L^{2}(\mathbb {R} _{+},\,d\mu _{\alpha })}
,[ 6] [ 7] where:
d
μ μ -->
α α -->
:=
Γ Γ -->
(
α α -->
+
1
)
2
α α -->
t
α α -->
+
1
d
t
{\displaystyle d\mu _{\alpha }:={\frac {\Gamma (\alpha +1)}{2^{\alpha }t^{\alpha +1}}}\,dt}
(here Γ denotes the Gamma function ).
Further generalisations are sometimes considered, for example
A
ν ν -->
2
{\displaystyle A_{\nu }^{2}}
denotes a weighted Bergman space (often called a Zen space[ 3] ) with respect to a translation-invariant positive regular Borel measure
ν ν -->
{\displaystyle \nu }
on the closed right complex half-plane
C
+
¯ ¯ -->
{\displaystyle {\overline {\mathbb {C} _{+}}}}
, that is:
A
ν ν -->
p
:=
{
f
:
C
+
⟶ ⟶ -->
C
analytic
:
‖ ‖ -->
f
‖ ‖ -->
A
ν ν -->
p
:=
(
sup
ε ε -->
>
0
∫ ∫ -->
C
+
¯ ¯ -->
|
f
(
z
+
ε ε -->
)
|
p
d
ν ν -->
(
z
)
)
1
/
p
<
∞ ∞ -->
}
.
{\displaystyle A_{\nu }^{p}:=\left\{f:\mathbb {C} _{+}\longrightarrow \mathbb {C} {\text{ analytic}}\;:\;\|f\|_{A_{\nu }^{p}}:=\left(\sup _{\varepsilon >0}\int _{\overline {\mathbb {C} _{+}}}|f(z+\varepsilon )|^{p}\,d\nu (z)\right)^{1/p}<\infty \right\}.}
Reproducing kernels
The reproducing kernel
k
z
A
2
{\displaystyle k_{z}^{A^{2}}}
of A 2 at point
z
∈ ∈ -->
D
{\displaystyle z\in \mathbb {D} }
is given by:[ 1]
k
z
A
2
(
ζ ζ -->
)
=
1
(
1
− − -->
z
¯ ¯ -->
ζ ζ -->
)
2
(
ζ ζ -->
∈ ∈ -->
D
)
,
{\displaystyle k_{z}^{A^{2}}(\zeta )={\frac {1}{(1-{\overline {z}}\zeta )^{2}}}\;\;\;\;\;(\zeta \in \mathbb {D} ),}
and similarly, for
A
2
(
C
+
)
{\displaystyle A^{2}(\mathbb {C} _{+})}
we have:[ 5]
k
z
A
2
(
C
+
)
(
ζ ζ -->
)
=
1
(
z
¯ ¯ -->
+
ζ ζ -->
)
2
(
ζ ζ -->
∈ ∈ -->
C
+
)
,
{\displaystyle k_{z}^{A^{2}(\mathbb {C} _{+})}(\zeta )={\frac {1}{({\overline {z}}+\zeta )^{2}}}\;\;\;\;\;(\zeta \in \mathbb {C} _{+}),}
In general, if
φ φ -->
{\displaystyle \varphi }
maps a domain
Ω Ω -->
{\displaystyle \Omega }
conformally onto a domain
D
{\displaystyle D}
, then:[ 1]
k
z
A
2
(
Ω Ω -->
)
(
ζ ζ -->
)
=
k
φ φ -->
(
z
)
A
2
(
D
)
(
φ φ -->
(
ζ ζ -->
)
)
φ φ -->
′
(
z
)
¯ ¯ -->
φ φ -->
′
(
ζ ζ -->
)
(
z
,
ζ ζ -->
∈ ∈ -->
Ω Ω -->
)
.
{\displaystyle k_{z}^{A^{2}(\Omega )}(\zeta )=k_{\varphi (z)}^{{\mathcal {A}}^{2}(D)}(\varphi (\zeta ))\,{\overline {\varphi '(z)}}\varphi '(\zeta )\;\;\;\;\;(z,\zeta \in \Omega ).}
In weighted case we have:[ 4]
k
z
A
α α -->
2
(
ζ ζ -->
)
=
α α -->
+
1
(
1
− − -->
z
¯ ¯ -->
ζ ζ -->
)
α α -->
+
2
(
z
,
ζ ζ -->
∈ ∈ -->
D
)
,
{\displaystyle k_{z}^{A_{\alpha }^{2}}(\zeta )={\frac {\alpha +1}{(1-{\overline {z}}\zeta )^{\alpha +2}}}\;\;\;\;\;(z,\zeta \in \mathbb {D} ),}
and:[ 5]
k
z
A
α α -->
2
(
C
+
)
(
ζ ζ -->
)
=
2
α α -->
(
α α -->
+
1
)
(
z
¯ ¯ -->
+
ζ ζ -->
)
α α -->
+
2
(
z
,
ζ ζ -->
∈ ∈ -->
C
+
)
.
{\displaystyle k_{z}^{A_{\alpha }^{2}(\mathbb {C} _{+})}(\zeta )={\frac {2^{\alpha }(\alpha +1)}{({\overline {z}}+\zeta )^{\alpha +2}}}\;\;\;\;\;(z,\zeta \in \mathbb {C} _{+}).}
References
^ a b c d Duren, Peter L.; Schuster, Alexander (2004), Bergman spaces , Mathematical Series and Monographs, American Mathematical Society, ISBN 978-0-8218-0810-8
^ Duren, Peter L. (1969), Extension of a theorem of Carleson (PDF) , vol. 75, Bulletin of the American Mathematical Society, pp. 143– 146
^ a b Jacob, Brigit; Partington, Jonathan R.; Pott, Sandra (2013-02-01). "On Laplace-Carleson embedding theorems". Journal of Functional Analysis . 264 (3): 783– 814. arXiv :1201.1021 . doi :10.1016/j.jfa.2012.11.016 . S2CID 7770226 .
^ a b Cowen, Carl; MacCluer, Barbara (1995-04-27), Composition Operators on Spaces of Analytic Functions , Studies in Advanced Mathematics, CRC Press, p. 27, ISBN 9780849384929
^ a b c Elliott, Sam J.; Wynn, Andrew (2011), "Composition Operators on the Weighted Bergman Spaces of the Half-Plane" , Proceedings of the Edinburgh Mathematical Society , 54 (2): 374– 379, arXiv :0910.0408 , doi :10.1017/S0013091509001412 , S2CID 18811195
^ Duren, Peter L.; Gallardo-Gutiérez, Eva A.; Montes-Rodríguez, Alfonso (2007-06-03), A Paley-Wiener theorem for Bergman spaces with application to invariant subspaces , vol. 39, Bulletin of the London Mathematical Society, pp. 459– 466, archived from the original on 2015-12-24
^ Gallrado-Gutiérez, Eva A.; Partington, Jonathan R.; Segura, Dolores (2009), Cyclic vectors and invariant subspaces for Bergman and Dirichlet shifts (PDF) , vol. 62, Journal of Operator Theory, pp. 199– 214
Further reading
Bergman, Stefan (1970), The kernel function and conformal mapping , Mathematical Surveys, vol. 5 (2nd ed.), American Mathematical Society
Hedenmalm, H.; Korenblum, B.; Zhu, K. (2000), Theory of Bergman Spaces , Springer, ISBN 978-0-387-98791-0
Richter, Stefan (2001) [1994], "Bergman spaces" , Encyclopedia of Mathematics , EMS Press .
See also