Bent bond

One of the first bent bond theories for cyclopropane was the Coulson-Moffitt model (1947).

In organic chemistry, a bent bond, also known as a banana bond, is a type of covalent chemical bond with a geometry somewhat reminiscent of a banana. The term itself is a general representation of electron density or configuration resembling a similar "bent" structure within small ring molecules, such as cyclopropane (C3H6) or as a representation of double or triple bonds within a compound that is an alternative to the sigma and pi bond model.

Small cyclic molecules

A humorously literal depiction of the banana bonds in cyclopropane

Bent bonds[1][2][3][4] are a special type of chemical bonding in which the ordinary hybridization state of two atoms making up a chemical bond are modified with increased or decreased s-orbital character in order to accommodate a particular molecular geometry. Bent bonds are found in strained organic compounds such as cyclopropane, oxirane and aziridine.

In these compounds, it is not possible for the carbon atoms to assume the 109.5° bond angles with standard sp3 hybridization. Increasing the p-character to sp5 (i.e. 16 s-density and 56 p-density)[5] makes it possible to reduce the bond angles to 60°. At the same time, the carbon-to-hydrogen bonds gain more s-character, which shortens them. In cyclopropane, the maximum electron density between two carbon atoms does not correspond to the internuclear axis, hence the name bent bond. In cyclopropane, the interorbital angle is 104°. This bending can be observed experimentally by X-ray diffraction of certain cyclopropane derivatives: the deformation density is outside the line of centers between the two carbon atoms. The carbon–carbon bond lengths are shorter than in a regular alkane bond: 151 pm versus 153 pm.[6]

Cyclobutane is a larger ring, but still has bent bonds. In this molecule, the carbon bond angles are 90° for the planar conformation and 88° for the puckered one. Unlike in cyclopropane, the C–C bond lengths actually increase rather than decrease; this is mainly due to 1,3-nonbonded steric repulsion. In terms of reactivity, cyclobutane is relatively inert and behaves like ordinary alkanes.

Walsh orbital model

An alternative model utilizes semi-localized Walsh orbitals in which cyclopropane is described as a carbon sp2 sigma bonding and in-plane pi bonding system. Critics of the Walsh orbital theory argue that this model does not represent the ground state of cyclopropane as it cannot be transformed into the localized or fully delocalized descriptions via a unitary transformation.[3]

Double and triple bonds

Two different explanations for the nature of double and triple covalent bonds in organic molecules were proposed in the 1930s. Linus Pauling proposed that the double bond results from two equivalent tetrahedral orbitals from each atom,[7] which later came to be called banana bonds or tau bonds.[8] Erich Hückel proposed a representation of the double bond as a combination of a sigma bond plus a pi bond.[9][10][11] The Hückel representation is the better-known one, and it is the one found in most textbooks since the late-20th century.

Both models represent the same total electron density, with the orbitals related by a unitary transformation. We can construct the two equivalent bent bond orbitals h and h' by taking linear combinations h = c1σ + c2π and h' = c1σ – c2π for an appropriate choice of coefficients c1 and c2. In a 1996 review, Kenneth B. Wiberg concluded that "although a conclusive statement cannot be made on the basis of the currently available information, it seems likely that we can continue to consider the σ/π and bent-bond descriptions of ethylene to be equivalent."[3] Ian Fleming goes further in a 2010 textbook, noting that "the overall distribution of electrons [...] is exactly the same" in the two models.[12]

Other applications

The bent bond theory can also explain other phenomena in organic molecules. In fluoromethane (CH3F), for instance, the experimental F–C–H bond angle is 109°, which is greater than the calculated value. This is because according to Bent's rule, the C–F bond gains p-orbital character leading to high s-character in the C–H bonds, and H–C–H bond angles approaching those of sp2 orbitals – e.g. 120° – leaving less for the F–C–H bond angle. The difference is again explained in terms of bent bonds.[3]

Bent bonds also come into play in the gauche effect, explaining the preference for gauche conformations in certain substituted alkanes and the alkene cis effect associated with some unusually stable alkene cis isomers.[3]

References

  1. ^ Burnelle, Louis; Kaufmann, Joyce J. (1965). "Molecular Orbitals of Diborane in Terms of a Gaussian Basis". J. Chem. Phys. 43 (10): 3540–45. Bibcode:1965JChPh..43.3540B. doi:10.1063/1.1696513.
  2. ^ Klessinger, Martin (1967). "Triple Bond in N2 and CO". J. Chem. Phys. 46 (8): 3261–62. Bibcode:1967JChPh..46.3261K. doi:10.1063/1.1841197.
  3. ^ a b c d e Wiberg, Kenneth B. (1996). "Bent Bonds in Organic Compounds". Acc. Chem. Res. 29 (5): 229–34. doi:10.1021/ar950207a.
  4. ^ Carey, F. A.; Sundberg, R. J. (1985). Advanced Organic Chemistry. ISBN 0-306-41198-9.
  5. ^ De Meijere, Armin (1979). "Bonding Properties of Cyclopropane and Their Chemical Consequences" (PDF). Angew. Chem. Int. Ed. Engl. 18 (11): 809–886. doi:10.1002/anie.197908093.
  6. ^ Allen, Frank H.; Kennard, Olga; Watson, David G.; Brammer, Lee; Orpen, A. Guy; Taylor, Robin (1987). "Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds". J. Chem. Soc., Perkin Trans. 2. 1987 (12): S1–S19. doi:10.1039/P298700000S1.
  7. ^ Pauling, Linus (1931). "The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules". J. Am. Chem. Soc. 53 (4): 1367–1400. doi:10.1021/ja01355a027..
  8. ^ Wintner, Claude E. (1987). "Stereoelectronic effects, tau bonds, and Cram's rule". J. Chem. Educ. 64 (7): 587. Bibcode:1987JChEd..64..587W. doi:10.1021/ed064p587..
  9. ^ Hückel, E. (1930). "Zur Quantentheorie der Doppelbindung". Z. Phys. 60 (7–8): 423–456. Bibcode:1930ZPhy...60..423H. doi:10.1007/BF01341254. S2CID 120342054.
  10. ^ Penney, W. G. (1934). "The Theory of the Structure of Ethylene and a Note on the Structure of Ethane". Proc. R. Soc. A144 (851): 166–187. Bibcode:1934RSPSA.144..166P. doi:10.1098/rspa.1934.0041.
  11. ^ Penney, W. G. (1934). "The Theory of the Stability of the Benzene Ring and Related Compounds". Proc. R. Soc. A146 (856): 223–238. Bibcode:1934RSPSA.146..223P. doi:10.1098/rspa.1934.0151..
  12. ^ Fleming, Ian (2010). Molecular Orbitals and Organic Chemical Reactions (Reference ed.). London: Wiley. p. 61. ISBN 978-0-470-74658-5..

Read other articles:

Species of squirrel from Asia Irrawaddy squirrel Nagarjun Forest, Kathmandu, Nepal Conservation status Least Concern (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Rodentia Family: Sciuridae Genus: Callosciurus Species: C. pygerythrus Binomial name Callosciurus pygerythrus(I. Geoffroy Saint Hilaire, 1832) Subspecies[2] C. p. pygerythrus C. p. blythii C. p. janetta C. p. lokroides C. p. mearsi C. p. ...

 

Provincial park in Ontario, Canada MacGregor Point Provincial ParkIUCN category II (national park)Observation Tower for bird watchingLocationMacGregor Point, Lake HuronNearest cityPort Elgin, OntarioCoordinates44°24′31″N 81°26′45″W / 44.40861°N 81.44583°W / 44.40861; -81.44583Area12.04 km2 (4.65 sq mi)Established1975Governing bodyOntario Parks MacGregor Point Provincial Park is a park located on Lake Huron, off of Bruce Road 33 near...

 

Сен-БазіSaint-Basile Країна  Франція Регіон Овернь-Рона-Альпи  Департамент Ардеш  Округ Турнон-сюр-Рон Кантон Ламастр Код INSEE 07218 Поштові індекси 07270 Координати 44°57′25″ пн. ш. 4°34′19″ сх. д.H G O Висота {{{висота_мін}}} - 878 м.н.р.м. Площа 17,85 км² Населення 340 (01-2020[1]) ...

Río Branco El río en Boa VistaUbicación geográficaCuenca Río AmazonasNacimiento Confluencia río Uraricoera y río TacutuDesembocadura Río NegroCoordenadas 1°06′14″N 60°54′32″O / 1.10389, -60.90898Ubicación administrativaPaís Brasil Brasil Guyana Guyana (solo cuenca) Venezuela Venezuela (solo cuenca)División  RoraimaCuerpo de aguaAfluentes Mucajaí, Anauá y CatrimaniLongitud Branco-Uraricoera, 1430 kmSolo Branco, 560 kmSuperficie de cuenca 19...

 

Gymnasium in Goiânia, Goiás This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Goiânia Arena – news · newspapers · books · scholar · JSTOR (July 2022) (Learn how and when to remove this template message) Goiânia ArenaThe exterior of Goiânia Arena.Full nameGoiânia ArenaLocationGoiânia, BrazilCoordinates16°41′52″S 49°13

 

Свірсько-Петрозаводська операція Радянсько-фінська війна Фінські солдати ведуть бій. Літо 1944Фінські солдати ведуть бій. Літо 1944 Дата: 21 червня 1944 (368-ма стрілецька дивізія почала наступ 19 червня[1]) — 9 серпня 1944 Місце: Південна Карелія, частина Ленінградської та Воло

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2022) بيوتر كومان معلومات شخصية الميلاد 25 يونيو 1985 (العمر 38 سنة) الطول 1.83 م (6 قدم 0 بوصة) مركز اللعب وسط الجنسية بولندا  معلومات النادي النادي الحالي Okocimsk...

 

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Artikel ini berisi konten yang ditulis dengan gaya sebuah iklan. Bantulah memperbaiki artikel ini dengan menghapus konten yang dianggap sebagai spam dan pranala luar yang tidak sesuai, dan tambahkan konten ensiklopedis yang ditulis dari sudut pandang netral dan sesuai dengan kebijakan ...

 

Coassolo Torinese شعار Coassolo Torineseشعار Coassolo Torineseشعار الاسم الرسمي Comune di Coassolo Torinese   الإحداثيات 45°18′N 7°28′E / 45.300°N 7.467°E / 45.300; 7.467 تقسيم إداري  البلد إيطاليا[1]  التقسيم الأعلى مدينة تورينو الحضرية (1 يناير 2015–)  خصائص جغرافية  المساحة 28٫0 كم2 (10٫8 ميل2) ار...

For the card game, see The Castle of Indolence (card game). Drawing of the Castle of Indolence[1] The Castle of Indolence is a poem written by James Thomson, a Scottish poet of the 18th century, in 1748. According to the Nuttall Encyclopedia, the Castle of Indolence is a place in which the dwellers live amid luxurious delights, to the enervation of soul and body. The poem is written in Spenserian stanzas at a time when they were considered outdated and initiated an interest in this st...

 

Italian politician (1925–2021) Falco AccameAccame in 1979Member of the Chamber of Deputies of ItalyIn office5 July 1976 – 11 July 1983ConstituencyGenoa Personal detailsBorn(1925-04-17)17 April 1925Florence, ItalyDied13 December 2021(2021-12-13) (aged 96)Rome, ItalyPolitical partyPSI Falco Accame (17 April 1925 – 13 December 2021) was an Italian politician.[1] A member of the Italian Socialist Party, he served in the Chamber of Deputies from 5 July 1976 to 11 July 1...

 

Historic church in Arkansas, United States United States historic placePhiladelphia Methodist ChurchU.S. National Register of Historic Places Location in ArkansasShow map of ArkansasLocation in United StatesShow map of the United StatesNearest cityMelbourne, ArkansasCoordinates36°6′39″N 91°52′0″W / 36.11083°N 91.86667°W / 36.11083; -91.86667Arealess than one acreBuilt1858ArchitectWicks, Samuel L.NRHP reference No.76000420[1]Added to NRHPSe...

Den här artikeln behöver källhänvisningar för att kunna verifieras. (2016-06) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan. All India Moovendar Munnani Kazhagam är ett tamilskt politiskt parti i Indien, baserat bland thevarkastet. Partiets grundare och ordförande är Dr. N. Sethuraman. Partiet grundades av All India Thevar Peravai (Allindisk...

 

Official flags of the U.S. city of New York City City of New YorkAdoptedApril 6, 1915(modified December 30, 1977)DesignA vertical tricolor of blue, white, and orange with a modified blue version of the Seal of New York City in the center. The flag unfurled and fluttering, mounted on a city park yardarm The flags of New York City include the flag of New York City, the respective flags of the boroughs of The Bronx, Brooklyn, Manhattan, Queens, and Staten Island, and flags of certain city depart...

 

A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (March 2019) (Learn how and when to remove this template message) Swedish songwriter Peter HallströmBackground informationBirth namePeter Berno HallströmBorn (1965-01-19) 19 January 1965 (age 58)SwedenOccupation(s)Songwriter, musician, record and sound pro...

2004 video gameMedal of Honor: Pacific AssaultDeveloper(s)EA Los AngelesPublisher(s)EA GamesArtist(s)James H. DargieComposer(s)Christopher LennertzSeriesMedal of HonorEngineLithTech JupiterPlatform(s)Microsoft WindowsReleaseNA: November 4, 2004EU: November 19, 2004Genre(s)First-person shooterMode(s)Single-player, multiplayer Medal of Honor: Pacific Assault is a first-person shooter video game developed by EA Los Angeles and published by Electronic Arts. The game is the seventh installment in ...

 

У Вікіпедії є статті про інших людей з іменем Агнеса (значення). Агнеса Римськалат. Agnes Romana Народилася 3 століттяРим, ВатиканПомерла 4 століттяРим, Ватикан·обезголовленняПоховання Сант Аньєзе фуорі ле МураГалузь християнство[1]Знання мов латинаКонфесія християнство ...

 

← 1976 •  • 1986 → Referéndum sobre el Proyecto de Constitución¿Aprueba el Proyecto de Constitución? Fecha Miércoles 6 de diciembre de 1978 Tipo Referéndum Debate (s) Constitución española de 1978 Demografía electoral Hab. registrados 26 632 180 Votantes 17 873 271 Participación    67.11 % Votos válidos 17 106 583 Votos en blanco 632 902 Votos nulos 133 786 Resultados Sí Votos 15,706,078      91.81 % N...

Fictional character from Saturday Night Live The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Chad Saturday Night Live – news · newspaper...

 

Artist, sculptor, illustrator A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (September 2023) (Learn how and when to remove this template message) Jo MoraJo MoraBornJoseph Jacinto Mora(1876-10-22)October 22, 1876Montevideo, UruguayDiedOctober 10, 1947(1947-10-10) (aged 70)Monterey, CaliforniaNationalityU...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!