Bennettitales

Bennettitales
Temporal range: Permian - Late Cretaceous,
Kungurian –Maastrichtian Possible Oligocene record
Restoration of a member of Williamsoniaceae by Thérèse Ekblom
Life restoration of "Williamsonia" sewardiana from the Early Cretaceous of India, which may represent an early member of Cycadeoidaceae
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Spermatophytes
Order: Bennettitales
Engler, 1892
Families

Bennettitales (also known as cycadeoids) is an extinct order of seed plants that first appeared in the Permian period and became extinct in most areas toward the end of the Cretaceous. Bennettitales were amongst the most common seed plants of the Mesozoic, and had morphologies including shrub and cycad-like forms. The foliage of bennettitaleans is superficially nearly indistinguishable from that of cycads, but they are distinguished from cycads by their more complex flower-like reproductive organs, at least some of which were likely pollinated by insects.[1]

Although certainly gymnosperms sensu lato (cone-bearing seed plants), the relationships of bennettitaleans to other seed plants is debated. Their general resemblance to cycads is contradicted by numerous more subtle features of their reproductive systems and leaf structure. Some authors have linked bennettitaleans to angiosperms (flowering plants) and gnetophytes (a rare and unusual group of modern gymnosperms), forming a broader group known as Anthophyta. Molecular data contradicts this, with gnetophytes found to be much more genetically similar to conifers. The exact position of Bennettitales remains uncertain.

Description

Bennettitales foliage assigned to the genus Pterophyllum
Restoration of the willamsoniacean shrub Wielandiella angustifolia showing divaricate branching habit

Bennettitales are divided into two families, Cycadeoidaceae and Williamsoniaceae, which have distinct growth habits. Cycadeoidaceae had stout, cycad-like trunks with bisporangiate (containing both megaspores and microspores) strobili (cones) serving as their reproductive structures. Williamsoniaceae either had bisporangiate or monosporangiate cones, and distinctly slender and branching woody trunks.[1] The Williamsoniaceae grew as woody shrubs with a divaricate branching habit, similar to that of Banksia.[2] It has been suggested that Williamsoniaceae are a paraphyletic (not containing all descendants of a common ancestor) assemblage of all Bennettitales that do not belong to the Cycadeoidaceae.[2]

Foliage

In general, bennettitalean leaves are attached to the stem with a helical (corkscrew) arrangement. Some leaves (most species of Nilssoniopteris, etc.) are narrow, solitary blades with a smooth-edged ("entire") margin.[3] Most leaf morphotypes (Pterophyllum, Ptilophyllum, Zamites, Otozamites, etc.) are pinnate (feather-shaped), with many small leaf segments attached to a central shaft. Others (Anomozamites, a few species of Nilssoniopteris) are incompletely pinnate (sawtooth-shaped) and transitional between these two end members. One unusual leaf form, Eoginkgoites, even approaches a palmate appearance similar to early species of Ginkgo.[4]

The foliage of bennettitaleans resembles that of cycads to such an extent that the foliage of the two groups cannot be reliably distinguished based on gross morphology alone. However, fossil foliage which preserves the cuticle can be assigned to either group with confidence. The stomata of bennettitaleans are described as syndetocheilic. This means that the main paired guard cells develop from the same mother cells as the subsidiary cells which surround them. This contrasts with the haplocheilic stomata of cycads and conifers. In haplocheilic stomata, the ring of subsidiary cells are not derived from the same original structures as the guard cells. This fundamental difference is the main way to differentiate bennettitalean and cycad foliage.[5]

Cones and seeds

Diagram of male Williamsoniaceae reproductive structure Weltrichia. Labels: CFR Centrifugal ray; CPR Centripetal ray; MR Median ridge; FS Fibrous strand; PS Pollen sac position (in this case, pollen sac attachment); CC Central cup; RBA Resin (resinous) body or attractant; ST Stalk
Cross section of the female williamsoniaceous seed cone Williamsonia harrisiana

Like other gymnosperms, bennettitalean reproductive inflorescences come in the form of cones, which produce pollen and ovules (unfertilized seeds). The cones have a thick central receptacle surrounded by simple, helically-arranged fertile and infertile structures. Tissue at the base of the cone forms layers of scale-like or petal-like bracts to protect the radiating inner structures. Some authors refer to bennettitalean cones as "flowers", though they are not equivalent to true angiosperm flowers. Pollen is often enclosed in paired synangia (pollen sacs). The synangia lie on the adaxial (inner) edge of pollen-bearing leaf-like structures known as microsporophylls. This contrasts with cycads, all of which lack discrete synangia and bear pollen on the abaxial (outer) surface of their microsporophylls.[6]

Many bennettitaleans are bisporangiate, where the pollen and ovules are hosted on the same (bisexual or hermaphrodite) cone. Cavities filled with curved synangia-bearing microsporophylls are encased by thin radiating structures, including thick, infertile interseminal scales and fertile sporophylls with ovules at their tips. The presence of ovules at the tips of sporophylls, rather than the tips of stems, is a major difference between the cones of bennettitaleans and gnetophytes. As the cone is fertilized and matures, the microsporophylls wither away and the ovules transform into seeds.[6]

Most bennettitaleans in the family Williamsoniaceae are instead monosporangiate, with separate pollen and ovule-producing (unisexual) cones on the same plant. The ovule-producing (female) cones (Williamsonia, etc.) are similar to mature bisporangiate cones, with interseminal scales and ovule-tipped sporophylls enclosed by bracts. Pollen-producing (male) cones (Weltrichia, etc.), on the other hand, feature an exposed crown of tapering microsporophylls with adaxial rows of synangia. The microsporophylls may host a single linear row of paired synangia, or instead synangia arranged in a pinnate (feather-shaped) pattern.[6]

Seeds are dicotyledonous (possess two embryonic leaves), with a central embryo surrounded by three layers: the thin megagametophyte, the slightly thicker nucellus, and the protective integument. The upper tip of the seed is tapered and opens through a thin and often extended micropyle. A long, narrow micropyle extending out of the seed is superficially similar to the condition in living gnetophytes. Once the seed is fertilized, the micropyle is sealed by a plug-shaped extension of the nucellus. Unlike living gymnosperms, the tip of the nucellus lacks a pollen chamber (receptacle for stored pollen). The integument is dense and thick, with many layers of differentiated cells. This contrasts with the thin, biseriate (two cell-layer) integument of gnetophytes. Bennettitaleans also lack another gnetophyte-like trait: a sheath of fused bracteoles enveloping the seed. Most integument cells are not unusual in size or shape. However, near the micropyle the innermost layer of integument cells become radially-oriented and elongated, partially closing in on the micropyle. The nucellus and integument are unfused above the chalaza (base of the seed), unlike cycads or gnetophytes, where the layers are fused for much of their height.[6]

Cycadeoidaceans have been suggested to have been self-pollinating, with their stems and cones buried underground,[1][7] although it has alternatively been proposed that they were pollinated by beetles.[8] The flower-like williamsoniacean male reproductive structure Weltrichia is associated with the female reproductive structure Williamsonia, though it is uncertain whether the parent plants were monoecious (male and female reproductive structures being present on the same plant) or dioecious (where each plant has only one gender of reproductive organ). Weltrichia was likely primarily wind-pollinated, with some species possibly pollinated by beetles.[9]

Several groups of Jurassic and Early Cretaceous insects possessed a long proboscis, and it has been suggested that they fed on nectar produced by bennettitalean reproductive structures, such as the bisexual williamsoniacean reproductive structure Williamsoniella, which had a long, narrow central receptacle which was likely otherwise inaccessible.[10] Early Cretaceous bennettitalean pollen has been found directly associated with a proboscis bearing fly belonging to the extinct family Zhangsolvidae, providing evidence that this family acted as pollinators for the group.[11] The interseminal scales of Bennettitales ovulate cones may have become fleshy at maturity, which could have potentially made then attractive to wild animals that served as seed dispersers.[12]

Taxonomy

History of discovery

The Cycadeoideaceae (originally "Cycadeoideae") were named by English geologist William Buckland in 1828, from fossil trunks found in Jurassic strata on the Isle of Portland, England, which Buckland gave the genus name Cycadeoidea. Buckland provided a description of the family and two species, but failed to give a description of the genus, which has led to Buckland's description of the family being considered invalid by modern taxonomic standards.[13] In publications in 1870, Scottish botanist William Carruthers and English paleobotanist William Crawford Williamson described the first known reproductive organs of the Bennettitales from Jurassic strata of Yorkshire and Jurassic-Cretaceous strata of the Isle of Wight and the Isle of Portland.[14][15][16] Caruthers was the first to recognise that Bennettitales had distinct differences from cycads, and established the tribes "Williamsonieae" and "Bennettiteae",[16] with the latter being named after the genus Bennettites named by Caruthers in the same publication, the name being in honour of British botanist John Joseph Bennett.[14][17] The order Bennettitales was erected by German botanist Adolf Engler in 1892, who recognised the group as separate from the Cycadales.[18]

Relationships to other seed plants

The Anthophyte hypothesis erected by Arber and Parking in 1907[19] posited that angiosperms arose from Bennettitales, as suggested by the wood-like structures and rudimentary flowers.[1] Based on morphological data, however, Bennettitales were classified as a monophyletic group when paired with Gnetales.[20] a study in 2006 suggested that Bennettitales, Angiosperms, and Gigantopteridales form a clade based on the presence of oleanane.[21] Molecular evidence has consistently contradicted the Anthophyte hypothesis, finding that Angiosperms are the sister group to all living gymnosperms, including Gnetales.[22] Some authors have suggested due to similarities between their seed coats, Bennettitales form a clade with the gymnosperm orders of Gnetales and Erdtmanithecales, dubbed the "BEG group".[23] However, this proposal has been contested by other authors, who contend that these similarities are only superficial and do not indicate a close relationship.[24] A 2017 phylogeny based on molecular signatures of fossilised cuticles found that Bennettitales were more closely related to the Ginkgo+Cycads clade than conifers, and were closely related to Nilssonia and Ptilozamites.[25]

Evolutionary history

The oldest confirmed fossils of bennettitaleans are leaves of Nilssoniopteris shanxiensis, a species from the upper part of the Upper Shihhotse Formation in Shanxi Province, China.[5] This strata is dated to the early Kungurian stage of the early Permian (Cisuralian), around 281 million years ago.[26] Supposed Carboniferous-Permian records of Pterophyllum do not have conclusive bennettitalean affinities or have been reinterpreted as cycad foliage in the form genus Pseudoctenis.[27] True Permian records of benettitalean leaves are rare; outside of the Shihhotse Formation they are only found in the Late Permian (likely Changhsingian)-age Umm Irna Formation in Jordan.[5] This formation is notable for the early occurrence of other Mesozoic-style flora, including the earliest records of corystospermalean foliage (Dicroidium).[28] The order Fredlindiales (containing the genus Fredlindia) from the Late Triassic of Gondwana appears to be closely related to Bennettitales, but differs from it in some aspects of its reproductive organs.[16]

The bennettitalean fossil record reappeared in the Middle Triassic, and williamsoniaceans became globally distributed by the end of the period.[29][5] The oldest bennettitalean reproductive structures are small Williamsonia "flowers" from the Middle Triassic Esk Formation of Australia.[16] While Williamsoniaceae had a global distribution, Cycadeoidaceae appear to have been primarily confined to the western parts of Laurasia, and are primarily known from the Cretaceous.[16] Bennettitales were widespread and abundant during the Jurassic and Early Cretaceous, however Bennettitales severely declined during the Late Cretaceous, coincident with the rise of flowering plants, being mostly extinct by the end of the period, with the final known remains from the Northern Hemisphere being found in the polar latitude Kakanaut Formation in Chukotka, Russia, dating to the Maastrichtian, assignable to Pterophyllum.[30] A possible late record has been reported from the early Oligocene of eastern Australia and Tasmania, assignable to the genus Ptilophyllum, but no cuticle was preserved, making the referral inconclusive.[31]

Subgroups

Bennettitales is typically considered the sole order in the class Bennettitopsida Engler (1897) or Cycadeoideopsida Scott (1923). Most paleobotanists prefer the two families as used here, though some authors, such as Anderson & Anderson (2007), classify the order via a larger number of families.[33] Anderson & Anderson also classified the orders Fredlindiales Anderson & Anderson (2003)[34] and Pentoxylales Pilger & Melchior (1954) within Bennettitopsida.[33]

References

  1. ^ a b c d Peñalver, Enrique; Arillo, Antonio; Pérez-de la Fuente, Ricardo; Riccio, Mark L.; Delclòs, Xavier; Barrón, Eduardo; Grimaldi, David A. (2015). "Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms". Current Biology. 25 (14): 1917–1923. doi:10.1016/j.cub.2015.05.062. PMID 26166781. S2CID 13022302.
  2. ^ a b Pott, Christian; McLoughlin, Stephen (2014-06-01). "Divaricate growth habit in Williamsoniaceae (Bennettitales): unravelling the ecology of a key Mesozoic plant group". Palaeobiodiversity and Palaeoenvironments. 94 (2): 307–325. doi:10.1007/s12549-014-0157-9. S2CID 84440045.
  3. ^ Ray, M.M.; Rothwell, G.W.; Stockey, R.A. (September 2014). "Anatomically Preserved Early Cretaceous Bennettitalean Leaves: Nilssoniopteris corrugata n. sp. from Vancouver Island, Canada". Journal of Paleontology. 88 (5): 1085–93. doi:10.1017/S002233600005767X. S2CID 232349931.
  4. ^ Pott, Christian; Axsmith, Brian J. (February 2015). "Williamsonia carolinensis sp. nov. and Associated Eoginkgoites Foliage from the Upper Triassic Pekin Formation, North Carolina: Implications for Early Evolution in the Williamsoniaceae (Bennettitales)". International Journal of Plant Sciences. 176 (2): 174–185. doi:10.1086/679471. S2CID 44559347.
  5. ^ a b c d Blomenkemper, Patrick; Bäumer, Robert; Backer, Malte; Abu Hamad, Abdalla; Wang, Jun; Kerp, Hans; Bomfleur, Benjamin (2021). "Bennettitalean Leaves From the Permian of Equatorial Pangea—The Early Radiation of an Iconic Mesozoic Gymnosperm Group". Frontiers in Earth Science. 9: 162. Bibcode:2021FrEaS...9..162B. doi:10.3389/feart.2021.652699.
  6. ^ a b c d Rothwell, Gar W.; Crepet, William L.; Stockey, Ruth A. (2009). "Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales". American Journal of Botany. 96 (1): 296–322. doi:10.3732/ajb.0800209. PMID 21628190.
  7. ^ Osborn, J.M.; Taylor, M.L. (2010). "Pollen and coprolite structure in Cycadeoidea (Bennettitales): implications for understanding pollination and mating systems in Mesozoic cycadeoids". Plants in deep Mesozoic time: morphological innovations, phylogeny, and ecosystems. Bloomington, IN: Indiana University Press. pp. 34–49. ISBN 978-0-253-00199-3.
  8. ^ Frame, Dawn; Gottsberger, Gerhard (21 April 2023). "Diverse sexual strategies in fossil gymnosperms: pollination in the Bennettitales revisited". Phyton. 62/63.
  9. ^ Popa, Mihai Emilian (2019-02-27). "Review of the bennettitalean genus Weltrichia". Journal of Palaeogeography. 8 (1): 12. Bibcode:2019JPalg...8...12P. doi:10.1186/s42501-019-0023-9. S2CID 85458053.
  10. ^ Khramov, Alexander V.; Lukashevich, Elena D. (July 2019). "A Jurassic dipteran pollinator with an extremely long proboscis". Gondwana Research. 71: 210–215. Bibcode:2019GondR..71..210K. doi:10.1016/j.gr.2019.02.004. S2CID 134847380.
  11. ^ Peñalver E, Arillo A, Pérez-de la Fuente R, Riccio ML, Delclòs X, Barrón E, Grimaldi DA (July 2015). "Long-Proboscid Flies as Pollinators of Cretaceous Gymnosperms". Current Biology. 25 (14): 1917–23. Bibcode:2015CBio...25.1917P. doi:10.1016/j.cub.2015.05.062. PMID 26166781.
  12. ^ Friis, Else Marie; Pedersen, Kaj Raunsgaard; Crane, Peter R., eds. (2011), "Angiosperms in context: extant and fossil seed plants", Early Flowers and Angiosperm Evolution, Cambridge: Cambridge University Press, pp. 101–140, ISBN 978-0-521-59283-3, retrieved 2023-03-20
  13. ^ Doweld, Alexander B. (2016-05-03). "The nomenclature of Cycadeoidea (fossil Spermatophyta: Cycadeoideopsida)". Taxon. 65 (2): 372–379. doi:10.12705/652.16.
  14. ^ a b Carruthers, William (May 1870). "XVIII. On Fossil Cycadean Stems from the Secondary Rocks of Britain". Transactions of the Linnean Society of London. 26 (4): 675–708. doi:10.1111/j.1096-3642.1870.tb00201.x.
  15. ^ Williamson, W. C. (May 1870). "XVII. Contributions towards the History of Zamia Gigas, Lindl. & Hutt.*". Transactions of the Linnean Society of London. 26 (4): 663–674. doi:10.1111/j.1096-3642.1870.tb00200.x.
  16. ^ a b c d e McLoughlin, Stephen; Pott, Christian; Sobbe, Ian H. (2018-03-01). "The diversity of Australian Mesozoic bennettitopsid reproductive organs" (PDF). Palaeobiodiversity and Palaeoenvironments. 98 (1): 71–95. doi:10.1007/s12549-017-0286-z. S2CID 135237376.
  17. ^ Britten, James; Boulger, George Simonds (1893). A biographical index of British and Irish botanists. London: West, Newman & co. p. 14. doi:10.5962/bhl.title.56947.
  18. ^ Engler, H.G.A. 1892. Syllabus der Vorlesungen über specielle und medicinisch-pharmaceutische Botanik. xxiii + 184 pp. Gebr. Borntraeger, Berlin
  19. ^ Arber, E.N.; Parkin, J. (July 1907). "On the Origin of Angiosperms". Botanical Journal of the Linnean Society. 38 (263): 29–80. doi:10.1111/j.1095-8339.1907.tb01074.x.
  20. ^ Crane, P.R. (September 1985). "Phylogenetic relationships in seed plants". Cladistics. 1 (4): 329–348. doi:10.1111/j.1096-0031.1985.tb00432.x. PMID 34965681. S2CID 85709030.
  21. ^ Taylor, David Winship; Li, Hongqi; Dahl, Jeremy; Fago, Fred J.; Zinniker, David; Moldowan, J. Michael (March 2006). "Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils". Paleobiology. 32 (2): 179–90. doi:10.1666/0094-8373(2006)32[179:BEFTPO]2.0.CO;2. S2CID 83801635.
  22. ^ Ran, Jin-Hua; Shen, Ting-Ting; Wang, Ming-Ming; Wang, Xiao-Quan (June 2018). "Phylogenomics resolves the deep phylogeny of seed plants and indicates partial convergent or homoplastic evolution between Gnetales and angiosperms". Proceedings. Biological Sciences. 285 (1881): 20181012. doi:10.1098/rspb.2018.1012. PMC 6030518. PMID 29925623.
  23. ^ Friis, Else Marie; Crane, Peter R.; Pedersen, Kaj Raunsgaard; Bengtson, Stefan; Donoghue, Philip C. J.; Grimm, Guido W.; Stampanoni, Marco (November 2007). "Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales". Nature. 450 (7169): 549–52. Bibcode:2007Natur.450..549F. doi:10.1038/nature06278. PMID 18033296. S2CID 1198220.
  24. ^ Rothwell, Gar W.; Stockey, Ruth A. (March 2013). "Evolution and Phylogeny of Gnetophytes: Evidence from the Anatomically Preserved Seed Cone Protoephedrites eamesii gen. et sp. nov. and the Seeds of Several Bennettitalean Species". International Journal of Plant Sciences. 174 (3): 511–529. doi:10.1086/668688. ISSN 1058-5893. S2CID 84063572.
  25. ^ Vajda, Vivi; Pucetaite, Milda; McLoughlin, Stephen; Engdahl, Anders; Heimdal, Jimmy; Uvdal, Per (August 2017). "Molecular signatures of fossil leaves provide unexpected new evidence for extinct plant relationships". Nature Ecology & Evolution. 1 (8): 1093–1099. doi:10.1038/s41559-017-0224-5. PMID 29046567. S2CID 3604369.
  26. ^ Wu, Qiong; Ramezani, Jahandar; Zhang, Hua; Wang, Jun; Zeng, Fangui; Zhang, Yichun; Liu, Feng; Chen, Jun; Cai, Yaofeng; Hou, Zhangshuai; Liu, Chao (2021-02-05). "High-precision U-Pb age constraints on the Permian floral turnovers, paleoclimate change, and tectonics of the North China block". Geology. 49 (6): 677–681. Bibcode:2021Geo....49..677W. doi:10.1130/G48051.1. S2CID 234064909.
  27. ^ Pott, Christian; McLoughlin, Stephen; Lindström, Anna (2009). "Late Palaeozoic Foliage from China Displays Affinities to Cycadales Rather than to Bennettitales Necessitating a Re-Evaluation of the Palaeozoic Pterophyllum Species". Acta Palaeontologica Polonica. 55 (1): 157–168. doi:10.4202/app.2009.0070. S2CID 52253114.
  28. ^ Blomenkemper, Patrick; Kerp, Hans; Abu Hamad, Abdalla; DiMichele, William A.; Bomfleur, Benjamin (December 2018). "A hidden cradle of plant evolution in Permian tropical lowlands". Science. 362 (6421): 1414–1416. Bibcode:2018Sci...362.1414B. doi:10.1126/science.aau4061. PMID 30573628.
  29. ^ Kustatscher, Evelyn; van Konijnenburg-van Cittert, Johanna H.A. (2005). "The Ladinian Flora (Middle Triassic) of the Dolomites: palaeoenvironmental reconstructions and palaeoclimatic considerations" (PDF). Geo.Alp. 2: 31–51.
  30. ^ Gnilovskaya, Anastasia A.; Golovneva, Lina B. (February 2018). "The Late Cretaceous Pterophyllum (Bennettitales) in the North-East of Russia". Cretaceous Research. 82: 56–63. doi:10.1016/j.cretres.2017.09.013.
  31. ^ McLoughlin, Stephen; Carpenter, Raymond J.; Pott, Christian (April 2011). "Ptilophyllum muelleri (Ettingsh.) comb. nov. from the Oligocene of Australia: last of the Bennettitales?". International Journal of Plant Sciences. 172 (4): 574–85. doi:10.1086/658920. S2CID 52885618.
  32. ^ Xu, Yuanyuan; Wang, Yongdong; McLoughlin, Stephen (September 2023). "How similar are the venation and cuticular characters of Glossopteris, Sagenopteris and Anthrophyopsis?". Review of Palaeobotany and Palynology. 316: 104934. doi:10.1016/j.revpalbo.2023.104934.
  33. ^ a b Anderson, John M.; Anderson, Heidi M.; Cleal, Chris J. (2007). "Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology" (PDF). Strelitzia. 20: 1–280.
  34. ^ Anderson, John M.; Anderson, Heidi M. (2003). "Heyday of the gymnosperms: systematics and biodiversity of the Late Triassic Molteno fructifications". Strelitzia. 15: 1–308.

Read other articles:

Voce principale: Romanzo criminale - La serie. La seconda stagione della serie televisiva Romanzo criminale - La serie andò in onda in prima visione su Sky Cinema 1 dal 18 novembre al 16 dicembre 2010. In chiaro andò in onda su Italia 1 dal 10 gennaio al 29 febbraio 2012. Logo della serie televisiva nº Titolo italiano Prima TV Italia 1 Episodio 1 18 novembre 2010 2 Episodio 2 18 novembre 2010 3 Episodio 3 25 novembre 2010 4 Episodio 4 25 novembre 2010 5 Episodio 5 2 dicembre 2010 6 Episodi...

 

Peruvian footballer (born 1982) This article is about the Peruvian footballer. For the Chilean author, see Roberto Merino (writer). In this Spanish name, the first or paternal surname is Merino and the second or maternal family name is Ramírez. Roberto Merino Personal informationFull name Roberto Merino RamírezDate of birth (1982-05-19) 19 May 1982 (age 41)Place of birth Chiclayo, PeruHeight 1.67 m (5 ft 6 in)Position(s) Attacking midfielderYouth career1997–199...

 

Colombian drug trafficker (1951-1998) In this Spanish name, the first or paternal surname is Herrera and the second or maternal family name is Buitrago. Francisco Hélmer Herrera BuitragoBorn(1951-08-24)August 24, 1951Palmira, Valle del Cauca, ColombiaDiedNovember 6, 1998(1998-11-06) (aged 47)Palmira, Valle del Cauca, ColombiaNationalityColombianOther namesPachoH-7Pacho33OccupationCo-leader of the Cali CartelKnown forDrug TraffickingCriminal chargeDrug trafficking and m...

This article is part of a series onLife in Egypt Culture Architecture Ancient Egyptian art Contemporary Cinema Cuisine Dance Belly dance Raqs sharqi Baladi Tahtib Tanoura Fashion History Holidays Language Literature Music Mythology Radio Sculpture Sport Symbols Flag Anthem Television Society People Identity Education Demographics Health Media Human rights Religion Wildlife World Heritage Sites Politics Presidency Government Parliament Political parties Military Corruption Law enforcement Fore...

 

Pour les articles homonymes, voir Túpac et Shakur. Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. L'introduction de cet article est soit absente, soit non conforme aux conventions de Wikipédia (octobre 2023). Ces motifs sont peut-être précisés sur la page de discussion. — Découvrez comment faire pour en améliorer la rédaction. Tupac Shakur Informations générales Surnom 2PacMakaveliMakaveli The Don KilluminatiMC New York Nom de naissance Tupac Amar...

 

American politician Charles Franklin SpragueMember of the U.S. House of Representativesfrom Massachusetts's 11th districtIn officeMarch 4, 1897 – March 3, 1901Preceded byWilliam F. DraperSucceeded bySamuel L. PowersMember of theMassachusetts State SenateIn officeJanuary 1895 - January 1897Preceded byFrancis William Kittredge[1]Succeeded byJoshua Bennett Holden[2]ConstituencyNinth Suffolk DistrictMember of the Massachusetts House of RepresentativesIn office1891-18...

Este artigo ou secção contém uma lista de referências no fim do texto, mas as suas fontes não são claras porque não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. Ajude a melhorar este artigo inserindo citações no corpo do artigo. (Janeiro de 2022) Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  ̶...

 

Andorra Kapitän Jordi Vila Vila Aktuelles ITF-Ranking 130 Statistik Erste Teilnahme 2000 Davis-Cup-Teilnahmen 17 davon in Weltgruppe 0 Bestes Ergebnis Europe/Afrika-Gruppenzone II(2003) Ewige Bilanz 27:45 Erfolgreichste Spieler Meiste Siege gesamt Jean-Baptiste Poux-Gautier (43) Meiste Einzelsiege Jean-Baptiste Poux-Gautier (26) Meiste Doppelsiege Jean-Baptiste Poux-Gautier (17) Bestes Doppel Jean-Baptiste Poux-Gautier / Jordi Vila Vila (6) Meiste Teilnahmen Jean-Baptiste Poux-Gautier (55) M...

 

LamhePoster rilis teatrikalSutradara Yash Chopra Produser Yash Chopra T. Subbarami Reddy Ditulis oleh Honey Irani Rahi Masoom Raza PemeranSrideviAnil KapoorWaheeda RehmanAnupam KherPenata musikShiv-HariSinematograferManmohan SinghDistributorYash Raj FilmsTanggal rilis22 November 1991Durasi187 menitNegaraBahasa Hindi Anggaran₹6 crore (setara dengan ₹37 crore atau US$5,2 juta pada tahun 2017)Pendapatankotor₹20,5 crore (setara dengan ₹13 milyar atau U...

1883 Kentucky gubernatorial election ← 1879 August 3, 1883 1887 →   Nominee J. Proctor Knott Thomas Z. Morrow Party Democratic Republican Popular vote 133,615 89,181 Percentage 59.97% 40.03% County resultsKnott:      50–60%      60–70%      70–80%      80–90%      >90%Morrow:      50–60%   &...

 

Medical Center Serie de televisión Chad Everett y Victoria Federova en un episodio de 1975Títulos en español Centro médicoGénero DramaProtagonistas Chad EverettJames DalyAudrey TotterPaís de origen Estados UnidosIdioma(s) original(es) InglésN.º de temporadas 6N.º de episodios 171ProducciónProductor(es) ejecutivo(s) Frank GlicksmanDuración 50 min.LanzamientoPrimera emisión 24 de septiembre de 1969Última emisión 6 de septiembre de 1976Enlaces externos Ver todos los créditos (IMDb...

 

Subsidiary manufacturer of HVAC systems This article is about the heating, ventilation, and air conditioning system manufacturer. For the holding company, see Trane Technologies. Trane Inc.Former Trane Company headquarters in La Crosse, WisconsinTypeSubsidiaryIndustryEquipment manufacturingFounded1913; 110 years ago (1913) as The Trane Company in La Crosse, Wisconsin, U.S.FounderJames TraneReuben TraneHeadquartersSwords, Dublin, IrelandProductsHeating, ventilation and air co...

History and popularity of manga outside their home country Part of a series onAnime and manga Anime History Voice acting Companies Studios Original video animation Original net animation Fansub Fandub Lists Longest series Longest franchises Manga History Publishers International market Manga artist Doujinshi Alternative Gekiga Yonkoma Iconography Scanlation Lists Best-selling series Longest series Demographic groups Children Shōnen Shōjo Seinen Josei Genres Bara Cooking Harem Isekai Lolicon...

 

Village in India This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sahara, Agra – news · newspapers · books · scholar · JSTOR (May 2019) (Learn how and when to remove this template message) Sahara is a village in Bichpuri Block in Agra District of Uttar Pradesh State, India. It belongs to Agra Division . It is located 13 k...

 

Metadata formats for display devices This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Extended Display Identification Data – news · newspapers · books · scholar&#...

Marqués de Comillas Información personalNombre de nacimiento Antonio López y López de LamadridNacimiento 12 de abril de 1817Comillas (España)Fallecimiento 16 de enero de 1883 (65 años)Barcelona (España) Sepultura Palacio de Sobrellano Nacionalidad EspañolaFamiliaHijos Claudio López Bru Información profesionalOcupación Empresario, banquero y político Cargos ocupados Senador de España (1881-1883) Título I marqués de ComillasDistinciones Gran Cruz de la Orden de Isabel la Cat...

 

У Вікіпедії є статті про інші значення цього терміна: Шевченківський район. Шевченківський район Основні дані Країна:  УкраїнаМісто: ЧернівціУтворений: 4 січня 1965 рокуНаселення: 145,4 тис. осіб (1 грудня 2007 року)Площа: 50 км²Густота населення: 2816 осіб/км²Географічні...

 

Italian politician and diplomat You can help expand this article with text translated from the corresponding article in Italian. (February 2009) Click [show] for important translation instructions. View a machine-translated version of the Italian article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-tran...

National park in central Chile Villarrica National ParkIUCN category II (national park)View of Villarrica National ParkLocationLa Araucanía and Los Ríos regions, ChileNearest cityPucónCoordinates39°25′S 71°56′W / 39.417°S 71.933°W / -39.417; -71.933Area630 km2 (243 sq mi)[1]Established1940[1]Visitors115,761[2] (in 2012)Governing bodyCorporación Nacional Forestal Villarrica National Park is located in...

 

1945 novel Night Club First editionAuthorPeter CheyneyCountryUnited KingdomLanguageEnglishGenreThrillerPublisherPoynings PressPublication date1945Media typePrint Night Club is a 1945 crime thriller novel by the British writer Peter Cheyney.[1] It is often better known by its alternative title Dressed to Kill, the name by which it was published in the United States and subsequent British versions. As with other Cheyney novels it features a hardboiled hero, and dialogue influenced ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!