Belinfante–Rosenfeld stress–energy tensor

In mathematical physics, the BelinfanteRosenfeld tensor is a modification of the stress–energy tensor that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved.

In a classical or quantum local field theory, the generator of Lorentz transformations can be written as an integral

of a local current

Here is the canonical stress–energy tensor satisfying , and is the contribution of the intrinsic (spin) angular momentum. The anti-symmetry

implies the anti-symmetry

Local conservation of angular momentum

requires that

Thus a source of spin-current implies a non-symmetric canonical stress–energy tensor.

The Belinfante–Rosenfeld tensor[1][2] is a modification of the stress–energy tensor

that is constructed from the canonical stress–energy tensor and the spin current so as to be symmetric yet still conserved, i.e.,

An integration by parts shows that

and so a physical interpretation of Belinfante tensor is that it includes the "bound momentum" associated with gradients of the intrinsic angular momentum. In other words, the added term is an analogue of the "bound current" associated with a magnetization density .

The curious combination of spin-current components required to make symmetric and yet still conserved seems totally ad hoc, but it was shown by both Rosenfeld and Belinfante that the modified tensor is precisely the symmetric Hilbert stress–energy tensor that acts as the source of gravity in general relativity. Just as it is the sum of the bound and free currents that acts as a source of the magnetic field, it is the sum of the bound and free energy–momentum that acts as a source of gravity.

Belinfante–Rosenfeld and the Hilbert energy–momentum tensor

The Hilbert energy–momentum tensor is defined by the variation of the action functional with respect to the metric as

or equivalently as

(The minus sign in the second equation arises because because )

We may also define an energy–momentum tensor by varying a Minkowski-orthonormal vierbein to get

Here is the Minkowski metric for the orthonormal vierbein frame, and are the covectors dual to the vierbeins.

With the vierbein variation there is no immediately obvious reason for to be symmetric. However, the action functional should be invariant under an infinitesimal local Lorentz transformation , , and so

should be zero. As is an arbitrary position-dependent skew symmetric matrix, we see that local Lorentz and rotation invariance both requires and implies that .

Once we know that is symmetric, it is easy to show that , and so the vierbein-variation energy–momentum tensor is equivalent to the metric-variation Hilbert tensor.

We can now understand the origin of the Belinfante–Rosenfeld modification of the Noether canonical energy momentum tensor. Take the action to be where is the spin connection that is determined by via the condition of being metric compatible and torsion free. The spin current is then defined by the variation

the vertical bar denoting that the are held fixed during the variation. The "canonical" Noether energy momentum tensor is the part that arises from the variation where we keep the spin connection fixed:

Then

Now, for a torsion-free and metric-compatible connection, we have that

where we are using the notation

Using the spin-connection variation, and after an integration by parts, we find

Thus we see that corrections to the canonical Noether tensor that appear in the Belinfante–Rosenfeld tensor occur because we need to simultaneously vary the vierbein and the spin connection if we are to preserve local Lorentz invariance.

As an example, consider the classical Lagrangian for the Dirac field

Here the spinor covariant derivatives are

We therefore get

There is no contribution from if we use the equations of motion, i.e. we are on shell.

Now

if are distinct and zero otherwise. As a consequence is totally anti-symmetric. Now, using this result, and again the equations of motion, we find that

Thus the Belinfante–Rosenfeld tensor becomes

The Belinfante–Rosenfeld tensor for the Dirac field is therefore seen to be the symmetrized canonical energy–momentum tensor.

Weinberg's definition

Steven Weinberg defined the Belinfante tensor as[3]

where is the Lagrangian density, the set {Ψ} are the fields appearing in the Lagrangian, the non-Belinfante energy momentum tensor is defined by

and are a set of matrices satisfying the algebra of the homogeneous Lorentz group[4]

.

References

  1. ^ F. J. Belinfante (1940). "On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields". Physica. 7 (5): 449. Bibcode:1940Phy.....7..449B. CiteSeerX 10.1.1.205.8093. doi:10.1016/S0031-8914(40)90091-X.
  2. ^ L. Rosenfeld (1940). "Sur le tenseur d'impulsion-énergie" (PDF). Mémoires Acad. Roy. De Belgique. 18 (6): 1–30.
  3. ^ Weinberg, Steven (2005). The quantum theory of fields (Repr., pbk. ed.). Cambridge [u.a.]: Cambridge Univ. Press. ISBN 9780521670531.
  4. ^ Cahill, Kevin, University of New Mexico (2013). Physical mathematics (Repr. ed.). Cambridge: Cambridge University Press. ISBN 9781107005211.{{cite book}}: CS1 maint: multiple names: authors list (link)

Read other articles:

漫画『ROOKIES』に登場する架空の「二子玉川学園」とは異なります。 学校法人玉川学園法人番号 8012305000162 創立者 小原國芳理事長 小原芳明創立 1929年(昭和4年)所属学校 玉川大学玉川学園中学部・高等部玉川学園小学部玉川学園幼稚部所在地 東京都町田市玉川学園六丁目1番1ウェブサイト http://www.tamagawa.jp プロジェクト:学校/学校法人の記事について Portal:教育テンプレ

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018)   لمعانٍ أخرى، طالع الحرورة (توضيح). الحروره  - قرية -  تقسيم إداري البلد  اليمن المحافظة م

 

Kejuaraan Eropa UEFA 2008UEFA Euro 2008 (Inggris) Fußball-Europameisterschaft 2008 (Jerman) Championnat d'Europe de football 2008 (Prancis) Campionato europeo di calcio 2008 (Italia) Campiunadi d'Europa da ballape 2008 (Romansh) Logo Resmi Kejuaraan Eropa UEFA 2008Informasi turnamenTuan rumahAustriaSwissJadwalpenyelenggaraan7 Juni – 29 JuniJumlahtim peserta16Tempatpenyelenggaraan8 (di 8 kota)Hasil turnamenJuara Spanyol (gelar ke-2)Tempat kedua JermanStatistik turnamenJumlahp...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) نورما شارب معلومات شخصية الميلاد 20 يوليو 1943 (80 سنة)  شوني  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة كانساسمعهد كولونيا للموسيقى والر

 

Este artigo não cita fontes confiáveis. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Novembro de 2020) Al Fujayrah Aplicação ... Proporção 1:2 Adoção 1975 Tipo nacionais Bandeira de 1975 à atualidade. Bandeira de Fujayrah de 1952 até 1975. Bandeira de Fujayrah até 1952. A Bandeira de Al Fujayrah é a mesma dos Emirados Árabes Unidos, ...

 

Guillaume de BadeBiographieNaissance 8 avril 1792KarlsruheDécès 11 octobre 1859 (à 67 ans)KarlsruheSépulture Église Großherzogliche Grabkapelle de Karlsruhe (d)Nom dans la langue maternelle Wilhelm von BadenNom de naissance Wilhelm Ludwig August von BadenNationalité badoiseActivité Homme politiqueFamille Maison de ZähringenPère Charles IerMère Louise-Caroline de HochbergFratrie Charles-Louis de BadeFrédéric de Bade (d)Louis Ier de BadeLéopold IerAmélie de Ba...

Este artículo habla de un municipio de Cataluña . No confundir con Bhaskara Para la fórmula resolvente de ecuaciones cuadráticas, véase Ecuación de segundo grado Báscara Bàscara municipio de CataluñaBanderaEscudo BáscaraUbicación de Báscara en España. BáscaraUbicación de Báscara en la provincia de Gerona.País  España• Com. autónoma  Cataluña• Provincia Gerona• Comarca Alto Ampurdán• Partido judicial Figueras[...

 

American comic book artist, writer Joe QuesadaQuesada at the December 21, 2010 press conference for the Fear Itself storyline at Midtown Comics Times Square in ManhattanBornJoseph Quesada (1962-01-12) January 12, 1962 (age 61)New York City, U.S.Area(s)Writer, Penciller, EditorAwards1993 Diamond Gem Award for Best Cover[1]Inkpot Award (2014)[2]Spouse(s)Nanci QuesadaChildren1 Joseph Quesada (/kəˈsɑːdə/; born January 12, 1962[3]) is an American comic book artist...

 

Shinty club Oban LornFull nameOban Lorn Shinty ClubGaelic nameComann Camanachd Latharnach an ObainNicknameLornFounded2015GroundGanavan, ObanLeagueSouth Division Two20173rd Home Oban Lorn Shinty Club was a shinty club from Oban, Scotland. It was founded in 2014 and competed in the South Division Two in 2015. The side continued until 2017, where it finished 3rd in South Division Two. The majority of the club became absorbed into Oban Celtic for the 2018 season History There have been other club...

Exterior of Rockaway Records, March 2020 Rockaway Records is a US independent music and memorabilia store located in the Silver Lake neighborhood of Los Angeles, California. The store's specialties are rare vinyl records, autographs, posters, memorabilia, and other music collectibles.[1] It was founded in 1979 in Los Angeles by brothers Gary and Wayne Johnson. History In 1979, after attending a record swap meet in the Capitol Records parking lot in Hollywood, avid music lovers Gary an...

 

Municipality in Ticino, SwitzerlandCapriascaMunicipality Coat of armsLocation of Capriasca CapriascaShow map of SwitzerlandCapriascaShow map of Canton of TicinoCoordinates: 46°4′N 8°58′E / 46.067°N 8.967°E / 46.067; 8.967CountrySwitzerlandCantonTicinoDistrictLuganoGovernment • MayorAndrea PellegrinelliArea[1] • Total35.3 km2 (13.6 sq mi)Elevation529 m (1,736 ft)Population (31 December 2018)[2]...

 

Advertising company One by AOLTypeSubsidiaryIndustryMobile advertising & MonetizationDefunctSeptember 10, 2018 (2018-09-10)HeadquartersBaltimore, Maryland, USAArea servedWorldwideKey peopleTim Mahlman (President)Seth Demsey (CTO)Number of employees601 (January 23, 2014)ParentAOLWebsitehttp://www.onebyaol.com/ One by AOL, formerly known as Millennial Media, was an advertising company that places display ads on mobile devices (mobile marketing). History One by AOL was founded...

此條目之中立性有争议。其內容、語調可能帶有明顯的個人觀點或地方色彩。 (2016年10月8日)加上此模板的編輯者需在討論頁說明此文中立性有爭議的原因,以便讓各編輯者討論和改善。在編輯之前請務必察看讨论页。 甘地在亚洲关系会议上发言 亚洲关系会议(印地语:एशियाई संबंध सम्मेलन)1947年3至4月在印度新德里举行,由印度总理贾瓦哈拉尔·尼赫...

 

This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: International Order of Characters – news · newspapers · books · scholar · JSTOR (November 2009) International Order of CharactersLogo, International Order of CharactersAn internationally recognized organizationAbbreviationIOCFormation1942PurposeAviati...

 

Вижницький район адміністративно-територіальна одиниця Герб Прапор Колишній район на карті Чернівецька область Основні дані Країна:  Україна Область: Чернівецька область Код КОАТУУ: 7320500000 Утворений: 5 липня 1940 р. Ліквідований: 17 липня 2020 Населення: ▼ 55 381 (на 1.1.2019) Пл...

Prasasti Telaga Batu Prasasti Telaga Batu 1 ditemukan di sekitar kolam Telaga Biru (tidak jauh dari Sabokingking), Kel. 3 Ilir, Kec. Ilir Timur II, Kota Palembang, Sumatera Selatan, pada tahun 1935.[1] Prasasti ini sekarang disimpan di Museum Nasional dengan No. D.155. Di sekitar lokasi penemuan prasasti ini juga ditemukan prasasti Telaga Batu 2, yang berisi tentang keberadaan suatu vihara di sekitar prasasti.[2] Pada tahun-tahun sebelumnya ditemukan lebih dari 30 buah prasast...

 

Shirt made from thick cloth material A raglan sleeve sweatshirt with Harley-Davidson branding A sweatshirt is a long-sleeved pullover shirt or jacket fashioned out of thick, usually cotton, cloth material.[1][2] Sweatshirts are almost exclusively casual attire and hence not as formal as some sweaters. Sweatshirts may or may not have a hood. A sweatshirt with a hood is now usually referred to as a hoodie, although more formal media still use the term hooded sweatshirt. History ...

 

1. Līga 2014SYFORM 1. līga Competizione 1. Līga Sport Calcio Edizione 23ª Organizzatore LFF Date dal 30 marzoall'8 novembre Luogo  Lettonia Partecipanti 16 Formula Girone all'italiana Risultati Vincitore  Gulbene(2º titolo) Promozioni  Gulbene Retrocessioni  Pļaviņas/DM Statistiche Incontri disputati 240 Gol segnati 1 065 (4,44 per incontro) Cronologia della competizione 2013 2015 Manuale La 1. Līga 2014 è stata la 23ª edizione della seconda divisio...

هجمات جنوب سيناء هيلتونطابارأس الشيطان المعلومات البلد مصر  الموقع طابا ونويبع، شبه جزيرة سيناء، مصر الإحداثيات 29°07′24.43″N 34°41′05.12″E / 29.1234528°N 34.6847556°E / 29.1234528; 34.684755629°29′24.20″N 34°53′58.50″E / 29.4900556°N 34.8995833°E / 29.4900556; 34.8995833 التاريخ 7 أكتوبر 2004 نوع الهج...

 

Municipality in Rhineland-Palatinate, GermanyDahlem Municipality Coat of armsLocation of Dahlem within Eifelkreis Bitburg-Prüm district Dahlem Show map of GermanyDahlem Show map of Rhineland-PalatinateCoordinates: 49°54′53″N 06°35′35″E / 49.91472°N 6.59306°E / 49.91472; 6.59306CountryGermanyStateRhineland-PalatinateDistrictEifelkreis Bitburg-Prüm Municipal assoc.Bitburger LandGovernment • Mayor (2019–24) Ralf Otten[1]Area ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!