The word "barnacle" is attested in the early 13th century as Middle English "bernekke" or "bernake", close to Old French "bernaque" and medieval Latinbernacae or berneka, denoting the barnacle goose.[1][2] Because the full life cycles of both barnacles and geese were unknown at the time, (geese spend their breeding seasons in the Arctic) a folktale emerged that geese hatched from barnacles. It was not applied strictly to the arthropod until the 1580s. The ultimate meaning of the word is unknown.[2][3]
The name Cirripedia comes from the Latin words cirritus "curly" from cirrus "curl"[4] and pedis from pes "foot".[5] The two words together mean "curly-footed", alluding to the curved legs used in filter-feeding.[6]
Description
Most barnacles are encrusters, attaching themselves to a hard substrate such as a rock, the shell of a mollusc, or a ship; or to an animal such as a whale (whale barnacles). The most common form, acorn barnacles, are sessile, growing their shells directly onto the substrate, whereas goose barnacles attach themselves by means of a stalk.[7]
Anatomy and physiology
Barnacles have a carapace made of six hard calcareous plates, with a lid or operculum made of four more plates. Inside the carapace, the animal lies on its stomach, projecting its limbs downwards. Segmentation is usually indistinct; the body is more or less evenly divided between the head and thorax, with little or no abdomen. Adult barnacles have few appendages on their heads, with only a single, vestigial pair of antennae attached to the cement gland. The eight pairs of thoracic limbs are called cirri; these are feathery and very long. The cirri extend to filter food, such as plankton, from the water and move it towards the mouth.[8]
Acorn barnacles are attached to the substratum by cement glands that form the base of the first pair of antennae; in effect, the animal is fixed upside down by means of its forehead. In some barnacles, the cement glands are fixed to a long, muscular stalk, but in most they are part of a flat membrane or calcified plate. These glands secrete a type of natural quick cement made of complex protein bonds (polyproteins) and other trace components like calcium.[9]: 2–3 This natural cement can withstand a pulling strength of 5,000 lbf/in2 (30,000 kPa) and a sticking strength of 22–60 lbf/in2 (200–400 kPa).[8]
Barnacles have no true heart, although a sinus close to the esophagus performs a similar function, with blood being pumped through it by a series of muscles.[10] The blood vascular system is minimal.[11] Similarly, they have no gills, absorbing oxygen from the water through the cirri and the surface of the body.[12] The excretory organs of barnacles are maxillary glands.[13]
The main sense of barnacles appears to be touch, with the hairs on the limbs being especially sensitive. The adult has three photoreceptors (ocelli), one median and two lateral. These record the stimulus for the barnacle shadow reflex, where a sudden decrease in light causes cessation of the fishing rhythm and closing of the opercular plates.[14] The photoreceptors are likely only capable of sensing the difference between light and dark.[15] This eye is derived from the primary naupliar eye.[16]
Life cycle
Barnacles pass through two distinct larval stages, the nauplius and the cyprid, before developing into a mature adult.
Nauplius larva
A fertilised egg hatches into a nauplius: a one-eyed larva comprising a head and a telson with three pairs of limbs, lacking a thorax or abdomen. This undergoes six moults, passing through five instars, before transforming into the cyprid stage. Nauplii are typically initially brooded by the parent, and released after the first moult as larvae that swim freely using setae.[17][18] All but the first instars are filter feeders.[19]
The cypris larva is the second and final larval stage before adulthood. In Rhizocephala and Thoracica an abdomen is absent in this stage, but the y-cyprids (post-naupliar instar) has three distinct abdominal segments.[21] It is not a feeding stage; its role is to find a suitable place to settle, since the adults are sessile.[17] The cyprid stage lasts from days to weeks. It explores potential surfaces with modified antennules; once it has found a suitable spot, it attaches head-first using its antennules and a secreted glycoproteinous cement. Larvae assess surfaces based upon their surface texture, chemistry, relative wettability, color, and the presence or absence and composition of a surface biofilm; swarming species are more likely to attach near other barnacles.[22] As the larva exhausts its energy reserves, it becomes less selective in the sites it selects. It cements itself permanently to the substrate with another proteinaceous compound, and then undergoes metamorphosis into a juvenile barnacle.[22]
Typical acorn barnacles develop six hard calcareous plates to surround and protect their bodies. For the rest of their lives, they are cemented to the substrate, using their feathery legs (cirri) to capture plankton. Once metamorphosis is over and they have reached their adult form, barnacles continue to grow by adding new material to their heavily calcified plates. These plates are not moulted; however, like all ecdysozoans, the barnacle moults its cuticle.[23]
Sexual reproduction
Most barnacles are hermaphroditic, producing both eggs and sperms. A few species have separate sexes, or have both males and hermaphrodites. The ovaries are located in the base or stalk, and may extend into the mantle, while the testes are towards the back of the head, often extending into the thorax. Typically, recently moulted hermaphroditic individuals are receptive as females. Self-fertilization, although theoretically possible, has been experimentally shown to be rare in barnacles.[26][27]
The sessile lifestyle of acorn barnacles makes sexual reproduction difficult, as they cannot leave their shells to mate. To facilitate genetic transfer between isolated individuals, barnacles have extraordinarily long penises. Barnacles probably have the largest penis-to-body size ratio of the animal kingdom,[26] up to eight times their body length, though on exposed coasts the penis is shorter and thicker.[25] The mating of acorn barnacles is described as pseudocopulation.[24][28]
The goose barnacle Pollicipes polymerus can alternatively reproduce by spermcasting, in which the male barnacle releases his sperm into the water, to be taken up by females. Isolated individuals always made use of spermcasting and sperm capture, as did a quarter of individuals with a close neighbour. This 2013 discovery overturned the long-held belief that barnacles were limited to pseucocopulation or hermaphroditism.[24]
Rhizocephalan barnacles had been considered hermaphroditic, but their males inject themselves into females' bodies, degrading to little more than sperm-producing cells.[29]
Ecology
Filter feeding
Most barnacles are filter feeders. From within their shell, they repeatedly reach into the water column with their cirri. These feathery appendages beat rhythmically to draw plankton and detritus into the shell for consumption.[7][30]
Filter-feeding apparatus of Balanus, showing thoracic appendages adapted as feathery cirri
Although they have been found at water depths to 600 m (2,000 ft),[7] most barnacles inhabit shallow waters, with 75% of species living in water depths less than 100 m (300 ft),[7] and 25% inhabiting the intertidal zone.[7] Within the intertidal zone, different species of barnacles live in very tightly constrained locations, allowing the exact height of an assemblage above or below sea level to be precisely determined.[7]
Since the intertidal zone periodically desiccates, barnacles are well adapted against water loss. Their calcite shells are impermeable, and they can close their apertures with movable plates when not feeding.[31] Their hard shells are assumed by zoologists to have evolved as an anti-predator adaptation.[32]
One group of stalked barnacles has adapted to a rafting lifestyle, drifting around close to the water's surface. They colonize every floating object, such as driftwood, and like some non-stalked barnacles attach themselves to marine animals. The species most specialized for this lifestyle is Dosima fascicularis, which secretes a gas-filled cement that makes it float at the surface.[33]
Parasitism
Other members of the class have an entirely different mode of life. Barnacles of the superorderRhizocephala, including the genusSacculina, are parasitic castrators of other arthropods, including crabs. The anatomy of these parasitic barnacles is greatly reduced compared to their free-living relatives. They have no carapace or limbs, having only unsegmented sac-like bodies. They feed by extending thread-like rhizomes of living cells into their hosts' bodies from their points of attachment.[34][15]
Competitors
Barnacles are displaced by limpets and mussels, which compete for space.[7] They employ two strategies to overwhelm their competitors: "swamping", and fast growth. In the swamping strategy, vast numbers of barnacles settle in the same place at once, covering a large patch of substrate, allowing at least some to survive in the balance of probabilities.[7] Fast growth allows the suspension feeders to access higher levels of the water column than their competitors, and to be large enough to resist displacement; species employing this response, such as the aptly named Megabalanus, can reach 7 cm (3 in) in length.[7]
Competitors may include other barnacles. Balanoids gained their advantage over the chthalamoids in the Oligocene, when they evolved tubular skeletons, which provide better anchorage to the substrate, and allow them to grow faster, undercutting, crushing, and smothering chthalamoids.[35]
Predators and parasites
Among the most common predators of barnacles are whelks. They are able to grind through the calcareous exoskeleton and eat the animal inside. Barnacle larvae are consumed by filter-feeding benthic predators including the musselMytilus edulis and the ascidianStyela gibbsi.[36] Another predator is the starfish species Pisaster ochraceus.[37][38] A stalked barnacle in the Iblomorpha, Chaetolepas calcitergum, lacks a heavily mineralised shell, but contains a high concentration of toxic bromine; this may serve to deter predators.[39] The turbellarian flatworm Stylochus, a serious predator of oyster spat, has been found in barnacles.[40] Parasites of barnacles include many species of Gregarinasina (alveolate protozoa), a few fungi, a few species of trematodes, and a parasitic castrator isopod, Hemioniscus balani.[40]
History of taxonomy
Barnacles were classified by Linnaeus and Cuvier as Mollusca, but in 1830 John Vaughan Thompson published observations showing the metamorphosis of the nauplius and cypris larvae into adult barnacles, and noted that these larvae were similar to those of crustaceans. In 1834, Hermann Burmeister reinterpreted these findings, moving barnacles from the Mollusca to Articulata (in modern terms, annelids + arthropods), showing naturalists that detailed study was needed to reevaluate their taxonomy.[41]
Charles Darwin took up this challenge in 1846, and developed his initial interest into a major study published as a series of monographs in 1851 and 1854.[41] He undertook this study at the suggestion of his friend the botanist Joseph Dalton Hooker, namely to thoroughly understand at least one species before making the generalisations needed for his theory of evolution by natural selection.[42]
The Royal Society notes that barnacles occupied Darwin, who worked from home, so intensely "that his son assumed all fathers behaved the same way: when visiting a friend he asked, 'Where does your father do his barnacles?'"[43] Upon the conclusion of his research, Darwin declared "I hate a barnacle as no man ever did before."[42][44]
Over 2,100 species of Cirripedia have been described.[45] Some authorities regard the Cirripedia as a full class or subclass. In 2001, Martin and Davis placed Cirripedia as an infraclass of Thecostraca, and divided it into six orders:[47]
In 2021, Chan et al. elevated Cirripedia to a subclass of the Thecostraca, and the superorders Acrothoracica, Rhizocephala, and Thoracica to infraclass. The updated classification with 11 orders has been accepted in the World Register of Marine Species.[45][48]
Barnacles are of economic consequence, as they often attach themselves to man-made structures. Particularly in the case of ships, they are classified as fouling organisms. The number and size of barnacles that cover ships can impair their efficiency by causing hydrodynamicdrag.[49]
MIT researchers have developed an adhesive inspired by the protein-based bioglue produced by barnacles to firmly attach to rocks. The adhesive can form a tight seal to halt bleeding within about 15 seconds of application.[52]
One version of the barnacle goose myth is that the birds emerge fully formed from goose barnacles.[58][59] The myth, with variants such as that the goose barnacles grow on trees, owes its longstanding popularity to ignorance of bird migration.[60][61][62] The myth survived to modern times through bestiaries.[63]
The political reformer John W. Gardner likened middle managers who settle into a comfortable position and "have stopped learning or growing" to the barnacle, who "is confronted with an existential decision about where it's going to live. Once it decides... it spends the rest of its life with its head cemented to a rock".[69]
^ abBarnes, Robert D. (1982). Invertebrate Zoology. Holt-Saunders International. pp. 694–707. ISBN978-0-03-056747-6.
^Lacalli, Thurston C. (September 2009). "Serial EM analysis of a copepod larval nervous system: Naupliar eye, optic circuitry, and prospects for full CNS reconstruction". Arthropod Structure & Development. 38 (5): 361–375. Bibcode:2009ArtSD..38..361L. doi:10.1016/j.asd.2009.04.002. PMID19376268.
^ abNewman, William A. (2007). "Cirripedia". In Sol Felty Light; James T. Carlton (eds.). The Light and Smith Manual: Intertidal Invertebrates from Central California to Oregon (4th ed.). University of California Press. pp. 475–484. ISBN978-0-520-23939-5.
^Ruppert, Edward E.; Fox, Richard S.; Barnes, Robert D. (2004). Invertebrate Zoology (7th ed.). Cengage Learning. p. 683. ISBN978-81-315-0104-7.
^Pitombo, Fabio B.; Pappalardo, Paula; Wares, John P.; Haye, Pilar A. (2016-02-23). "A rose by any other name: systematics and diversity in the Chilean giant barnacle Austromegabalanus psittacus (Molina, 1782) (Cirripedia)". Journal of Crustacean Biology. 36 (2): 180–188. doi:10.1163/1937240X-00002403.
NaskahPapirus 106NamaP. Oxy. 4445Tanda P {\displaystyle {\mathfrak {P}}} 106TeksInjil Yohanes 1:29-35; 1:40-46Waktuabad ke-3Aksarabahasa YunaniDitemukanOxyrhynchus, MesirKini diSackler LibraryKutipanW. E. H. Cockle, OP LXIV (1997), pp. 11-14Ukuran13 x 8,8 cmJenisTeks AlexandriaKategoriI Papirus 106 (bahasa Inggris: Papyrus 106; dalam penomoran Gregory-Aland), diberi kode siglum P {\displaystyle {\mathfrak {P}}} 106, juga dinamai Papirus Oxyrhynchus 4445 atau P. Oxy. 4445) adalah sebu...
Czech slalom canoeist (born 1992) Monika Jančová Jančová at 2013 World Championships Medal record Women's canoe slalom Representing Czech Republic World Championships 2013 Prague C1 team 2015 London C1 team 2017 Pau C1 team European Championships 2015 Markkleeberg C1 team 2016 Liptovský Mikuláš C1 team 2017 Tacen C1 team U23 World Championships 2012 Wausau C1 2014 Penrith C1 2015 Foz do Iguaçu C1 team U23 European Championships 2012 Solkan C1 2015 Kraków C1 2013 Bourg-Saint-Mau...
Halaman ini berisi artikel tentang televisi digital yang diterima secara terestrial menggunakan antena. Untuk televisi digital secara umum, lihat Televisi digital. Sistem penyiaran DTT menurut negara Daftar standar penyiaran televisi digital Standar DVB (negara) DVB-T (terestrial) DVB-T2 DVB-S (satelit) DVB-S2 DVB-C (kabel) DVB-C2 DVB-H (handheld) DVB-SH (satelit) Standar ATSC (negara) ATSC (terestrial/kabel) ATSC 2.0 ATSC-M/H (mobile/handheld) Standar ISDB (negara) ISDB-T (terestrial) ISDB-T...
Dmitri Solowjow Bobrowa und Solowjow beim Cup of China 2010 Voller Name Dmitri Wladimirowitsch Solowjow Nation Russland Russland Geburtstag 18. Juli 1989 Geburtsort Moskau, Sowjetunion Sowjetunion Größe 183 cm Karriere Disziplin Eistanz Partner/in Jekaterina Bobrowa Verein Blue Bird FSC Trainer Jelena Kustarowa, Swetlana Alexejewa Status aktiv Medaillenspiegel Olympische Medaillen 1 × 1 × 0 × WM-Medaillen 0 × 0 × 1 × EM-Medaillen 1 × 3 × 2 × Olympische Winterspi...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2019) ر. إي. أ. بالمر معلومات شخصية تاريخ الميلاد سنة 1933 الوفاة 11 مارس 2006 (72–73 سنة) مواطنة الولايات المتحدة الحياة العملية المدرسة الأم جامعة جونز هوبك�...
Pseudupeneus maculatus Estado de conservação Pouco preocupante [1] Classificação científica Reino: Animalia Filo: Chordata Classe: Actinopterygii Ordem: Perciformes Família: Mullidae Gênero: Pseudupeneus Espécie: P. maculatus Nome binomial Pseudupeneus maculatus(Bloch, 1793) O Pseudupeneus maculatus é uma espécie tropical de peixe perciforme da família dos mulídeos, comummente denominada saramunete[2] ou beija-moça[3].[1] Tais animais chegam a medir até 30 cm de comprimento, com...
Cambarus cryptodytes Estado de conservação Espécie pouco preocupante (IUCN 3.1)[1] Classificação científica Domínio: Eukaryota Reino: Animalia Filo: Arthropoda Classe: Malacostraca Ordem: Decapoda Família: Cambaridae Gênero: Cambarus Espécies: C. cryptodytes Nome binomial Cambarus cryptodytesHobbs, 1941 Cambarus cryptodytes é uma espécie de crustáceo da família Cambaridae. É endémica dos Estados Unidos da América. Referências ↑ Cordeiro, J.; Crandall, K.A.; Jones...
Relazioni tra Italia e Kenya Mappa che indica l'ubicazione di Italia e Kenya Italia Kenya Le relazioni bilaterali tra Italia e Kenya sono le relazioni diplomatiche tra Italia e Kenya. Indice 1 Storia 2 Cooperazione per lo sviluppo 2.1 Progetto San Marco 3 Relazioni economiche 4 Missioni diplomatiche 5 Note 6 Collegamenti esterni Storia I primi contatti tra i due paesi avvennero nel 1902, quando i primi missionari italia...
Centro Nacional de la MúsicaLocalisationLocalisation Buenos Aires ArgentineCoordonnées 34° 36′ 47″ S, 58° 22′ 38″ Omodifier - modifier le code - modifier Wikidata Centro Nacional de la Música. Le Centro Nacional de la Música ou Centre national de la Musique est un bâtiment historique situé dans le quartier San Telmo de Buenos Aires, la capitale de l'Argentine. Historique Destiné primitivement à accueillir les locaux de la Loterie nationale ...
اختصاراتوب:عن أسئلة وأجوبة القراء عن ويكيبيديا إدارة أسئلة متكررة تقييم جودة المقالة ضبط استنادي كتب تصانيف الرقابة حقوق النشر توضيح الصور والوسائط المتعددة ردمك التنسيقات المصغرة تصفح من الجوال الوصول دون اتصال تصفح لغات أخرى اسم الصفحة بوابات بحث مساعدة الطالب البحث با
Medical procedure Balloon septostomy3D Medical Animation still shot showing Balloon SeptostomyICD-9-CM35.41[edit on Wikidata] Balloon septostomy is the widening of a foramen ovale, patent foramen ovale (PFO), or atrial septal defect (ASD) via cardiac catheterization (heart cath) using a balloon catheter. This procedure allows a greater amount of oxygenated blood to enter the systemic circulation in some cases of cyanotic congenital heart defect (CHD).[citation needed] After the ca...
Progression des records d'Europe de natation messieurs Nage libre 50 m 100 m 200 m 400 m 800 m 1500 m Dos 50 m 100 m 200 m Brasse 50 m 100 m 200 m Papillon 50 m 100 m 200 m 4 nages 100 m 200 m 400 m Relais 4 × 50 m NL 4 × 100 m NL 4 × 200 m NL 4 × 50 m 4 nages 4 × 100 m 4 nages Bassin de 50 mètres Temps Athlète Naissance Âge Nationalité Compétition Lieu Date 4 min 28 s 89 Andras Hargitay Hongrie Championnats d'Europe Vienne 20 août 1974 4 min 26 s 00 Zoltan Verraszto Hongrie Long B...
Former railway maintenance depot in Wath-upon-Dearness, South Yorkshire Wath TMDA line of Class 76 1500 V DC locomotives outside Wath depot in March 1976LocationLocationWath-upon-Dearne, South YorkshireCoordinates53°30′32″N 1°20′47″W / 53.5088°N 1.3463°W / 53.5088; -1.3463OS gridSE434015CharacteristicsOwnerBritish RailDepot codeWH (1973 -)[1]TypeDieselHistoryClosed1983[2]Former depot code36B (1 April 1952 - 30 June 1958) 41F (1 July 1958 - 3...
American provider of on-demand streaming media For the separate Japanese video-on-demand service that was spun off in 2014, see Hulu Japan. HuluLogo used since 2018Type of businessJoint ventureType of siteOTT video streaming platformHeadquartersLos Angeles, California, U.S.Area servedUnited StatesOwner The Walt Disney Company (67%)[1][2] NBCUniversal (Comcast) (33%; sale to Disney pending) Key peopleJoe Earley (president)ParentDisney StreamingURLhulu.comAdvertisingYe...
Bavin ministry44th Cabinet of the State of New South WalesPremier Thomas BavinDate formed18 October 1927Date dissolved3 November 1930People and organisationsMonarchGeorge VGovernorSir Dudley de Chair / Sir Phillip GameHead of governmentThomas BavinNo. of ministers12Member partyNationalistStatus in legislatureMajority governmentOpposition partyLaborOpposition leaderJack LangHistoryElection(s)1927 New South Wales electionPredecessorLang ministry (1927)SuccessorLang ministry (1930-1932) The Bavi...
Award Not to be confused with the Daytime Emmy Award with the same name. Primetime Emmy Award for Outstanding Supporting Actor in a Drama SeriesThe 2022 recipient: Matthew MacfadyenAwarded forOutstanding Supporting Actor in a Drama SeriesCountryUnited StatesPresented byAcademy of Television Arts & SciencesFirst awarded1954Currently held byMatthew Macfadyen, Succession (2022)Websiteemmys.com This is a list of winners and nominees of the Primetime Emmy Award for Outstanding Supporting Actor...
Team sport This article is about the indoor team sport. For the beach team sport, see Beach volleyball. For other uses, see Volleyball (disambiguation). See also: Throwball and Newcomb ball This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Volleyball – news · newspapers · books · scholar · JSTOR (September 201...
Airport in Mallala, South AustraliaRAAF Base MallalaIATA: noneICAO: noneSummaryLocationMallala, South AustraliaBuilt1941In use1941–1960Coordinates34°24′54″S 138°30′17″E / 34.41500°S 138.50472°E / -34.41500; 138.50472 RAAF Base Mallala was a Royal Australian Air Force (RAAF) base at Mallala, South Australia. History Since 1939, the RAAF was aware of a suitable airfield at Mallala. On 25 February 1941 a group of officers conducted a detailed assessment of t...