Audio deepfakes, referred to as audio manipulations beginning in the early 2020s, are becoming widely accessible using simple mobile devices or personal computers.[8] These tools have also been used to spread misinformation using audio.[3] This has led to cybersecurity concerns among the global public about the side effects of using audio deepfakes, including its possible role in disseminating misinformation and disinformation in audio-based social media platforms.[9] People can use them as a logical access voice spoofing technique,[10] where they can be used to manipulate public opinion for propaganda, defamation, or terrorism. Vast amounts of voice recordings are daily transmitted over the Internet, and spoofing detection is challenging.[11] Audio deepfake attackers have targeted individuals and organizations, including politicians and governments.[12]
In 2019, scammers using AI impersonated the voice of the CEO of a German energy company and directed the CEO of its UK subsidiary to transfer €220,000.[13] In early 2020, the same technique impersonated a company director as part of an elaborate scheme that convinced a branch manager to transfer $35 million.[14]
According to a 2023 global McAfee survey, one person in ten reported having been targeted by an AI voice cloning scam; 77% of these targets reported losing money to the scam.[15][16] Audio deepfakes could also pose a danger to voice ID systems currently used by financial institutions.[17][18] In March 2023, the United States Federal Trade Commission issued a warning to consumers about the use of AI to fake the voice of a family member in distress asking for money.[19]
In October 2023, during the start of the British Labour Party's conference in Liverpool, an audio deepfake of Labour leader Keir Starmer was released that falsely portrayed him verbally abusing his staffers and criticizing Liverpool.[20] That same month, an audio deepfake of Slovak politician Michal Šimečka falsely claimed to capture him discussing ways to rig the upcoming election.[21]
During the campaign for the 2024 New Hampshire Democratic presidential primary, over 20,000 voters received robocalls from an AI-impersonated President Joe Biden urging them not to vote.[22][23] The New Hampshire attorney general said this violated state election laws, and alleged involvement by Life Corporation and Lingo Telecom.[24] In February 2024, the United States Federal Communications Commission banned the use of AI to fake voices in robocalls.[25][26] That same month, political consultant Steve Kramer admitted that he had commissioned the calls for $500. He said that he wanted to call attention to the need for rules governing the use of AI in political campaigns.[27] In May, the FCC said that Kramer had violated federal law by spoofing the number of a local political figure, and proposed a fine of $6 million. Four New Hampshire counties indicted Kramer on felony counts of voter suppression, and impersonating a candidate, a misdemeanor.[28]
Categories
Audio deepfakes can be divided into three different categories:
Replay-based
Replay-based deepfakes are malicious works that aim to reproduce a recording of the interlocutor's voice.[29]
There are two types: far-field detection and cut-and-paste detection. In far-field detection, a microphone recording of the victim is played as a test segment on a hands-free phone.[30] On the other hand, cut-and-paste involves faking the requested sentence from a text-dependent system.[11] Text-dependent speaker verification can be used to defend against replay-based attacks.[29][31] A current technique that detects end-to-end replay attacks is the use of deep convolutional neural networks.[32]
Synthetic-based
The category based on speech synthesis refers to the artificial production of human speech, using software or hardware system programs. Speech synthesis includes Text-To-Speech, which aims to transform the text into acceptable and natural speech in real-time,[33] making the speech sound in line with the text input, using the rules of linguistic description of the text.
A classical system of this type consists of three modules: a text analysis model, an acoustic model, and a vocoder. The generation usually has to follow two essential steps. It is necessary to collect clean and well-structured raw audio with the transcripted text of the original speech audio sentence. Second, the Text-To-Speech model must be trained using these data to build a synthetic audio generation model.
Specifically, the transcribed text with the target speaker's voice is the input of the generation model. The text analysis module processes the input text and converts it into linguistic features. Then, the acoustic module extracts the parameters of the target speaker from the audio data based on the linguistic features generated by the text analysis module.[8] Finally, the vocoder learns to create vocal waveforms based on the parameters of the acoustic features. The final audio file is generated, including the synthetic simulation audio in a waveform format, creating speech audio in the voice of many speakers, even those not in training.
The first breakthrough in this regard was introduced by WaveNet,[34] a neural network for generating raw audio waveforms capable of emulating the characteristics of many different speakers. This network has been overtaken over the years by other systems[35][36][37][38][39][40] which synthesize highly realistic artificial voices within everyone’s reach.[41]
Text-To-Speech is highly dependent on the quality of the voice corpus used to realize the system, and creating an entire voice corpus is expensive.[citation needed] Another disadvantage is that speech synthesis systems do not recognize periods or special characters. Also, ambiguity problems are persistent, as two words written in the same way can have different meanings.[citation needed]
Imitation-based
Audio deepfake based on imitation is a way of transforming an original speech from one speaker - the original - so that it sounds spoken like another speaker - the target one.[42] An imitation-based algorithm takes a spoken signal as input and alters it by changing its style, intonation, or prosody, trying to mimic the target voice without changing the linguistic information.[43] This technique is also known as voice conversion.
This method is often confused with the previous Synthetic-based method, as there is no clear separation between the two approaches regarding the generation process. Indeed, both methods modify acoustic-spectral and style characteristics of the speech audio signal, but the Imitation-based usually keeps the input and output text unaltered. This is obtained by changing how this sentence is spoken to match the target speaker's characteristics.[44]
Voices can be imitated in several ways, such as using humans with similar voices that can mimic the original speaker. In recent years, the most popular approach involves the use of particular neural networks called Generative Adversarial Networks (GAN) due to their flexibility as well as high-quality results.[29][42]
Then, the original audio signal is transformed to say a speech in the target audio using an imitation generation method that generates a new speech, shown in the fake one.
Detection methods
The audio deepfake detection task determines whether the given speech audio is real or fake.
Recently, this has become a hot topic in the forensic research community, trying to keep up with the rapid evolution of counterfeiting techniques.
In general, deepfake detection methods can be divided into two categories based on the aspect they leverage to perform the detection task. The first focuses on low-level aspects, looking for artifacts introduced by the generators at the sample level. The second, instead, focus on higher-level features representing more complex aspects as the semantic content of the speech audio recording.
Many machine learning and deep learning models have been developed using different strategies to detect fake audio. Most of the time, these algorithms follow a three-steps procedure:
Each speech audio recording must be preprocessed and transformed into appropriate audio features;
The computed features are fed into the detection model, which performs the necessary operations, such as the training process, essential to discriminate between real and fake speech audio;
The output is fed into the final module to produce a prediction probability of the Fake class or the Real one. Following the ASVspoof[45] challenge nomenclature, the Fake audio is indicated with the term "Spoof," the Real instead is called "Bonafide."
Over the years, many researchers have shown that machine learning approaches are more accurate than deep learning methods, regardless of the features used.[8] However, the scalability of machine learning methods is not confirmed due to excessive training and manual feature extraction, especially with many audio files. Instead, when deep learning algorithms are used, specific transformations are required on the audio files to ensure that the algorithms can handle them.
There are several open-source implementations of different detection methods,[46][47][48] and usually many research groups release them on a public hosting service like GitHub.
Open challenges and future research direction
The audio deepfake is a very recent field of research. For this reason, there are many possibilities for development and improvement, as well as possible threats that adopting this technology can bring to our daily lives. The most important ones are listed below.
Deepfake generation
Regarding the generation, the most significant aspect is the credibility of the victim, i.e., the perceptual quality of the audio deepfake.
Several metrics determine the level of accuracy of audio deepfake generation, and the most widely used is the MOS (Mean Opinion Score), which is the arithmetic average of user ratings. Usually, the test to be rated involves perceptual evaluation of sentences made by different speech generation algorithms. This index showed that audio generated by algorithms trained on a single speaker has a higher MOS.[44][34][49][50][39]
The sampling rate also plays an essential role in detecting and generating audio deepfakes. Currently, available datasets have a sampling rate of around 16 kHz, significantly reducing speech quality. An increase in the sampling rate could lead to higher quality generation.[37]
Deepfake detection
Focusing on the detection part, one principal weakness affecting recent models is the adopted language.
Most studies focus on detecting audio deepfake in the English language, not paying much attention to the most spoken languages like Chinese and Spanish,[51] as well as Hindi and Arabic.
It is also essential to consider more factors related to different accents that represent the way of pronunciation strictly associated with a particular individual, location, or nation. In other fields of audio, such as speaker recognition, the accent has been found to influence the performance significantly,[52] so it is expected that this feature could affect the models' performance even in this detection task.
In addition, the excessive preprocessing of the audio data has led to a very high and often unsustainable computational cost. For this reason, many researchers have suggested following a Self-Supervised Learning approach,[53] dealing with unlabeled data to work effectively in detection tasks and improving the model's scalability, and, at the same time, decreasing the computational cost.
Training and testing models with real audio data is still an underdeveloped area. Indeed, using audio with real-world background noises can increase the robustness of the fake audio detection models.
In addition, most of the effort is focused on detecting Synthetic-based audio deepfakes, and few studies are analyzing imitation-based due to their intrinsic difficulty in the generation process.[11]
Defense against deepfakes
Over the years, there has been an increase in techniques aimed at defending against malicious actions that audio deepfake could bring, such as identity theft and manipulation of speeches by the nation's governors.
To prevent deepfakes, some suggest using blockchain and other distributed ledger technologies (DLT) to identify the provenance of data and track information.[8][54][55][56]
Extracting and comparing affective cues corresponding to perceived emotions from digital content has also been proposed to combat deepfakes.[57][58][59]
Another critical aspect concerns the mitigation of this problem. It has been suggested that it would be better to keep some proprietary detection tools only for those who need them, such as fact-checkers for journalists.[29] That way, those who create the generation models, perhaps for nefarious purposes, would not know precisely what features facilitate the detection of a deepfake,[29] discouraging possible attackers.
To improve the detection instead, researchers are trying to generalize the process,[60] looking for preprocessing techniques that improve performance and testing different loss functions used for training.[10][61]
Research programs
Numerous research groups worldwide are working to recognize media manipulations; i.e., audio deepfakes but also image and video deepfake. These projects are usually supported by public or private funding and are in close contact with universities and research institutions.
For this purpose, the Defense Advanced Research Projects Agency (DARPA) runs the Semantic Forensics (SemaFor).[62][63] Leveraging some of the research from the Media Forensics (MediFor)[64][65] program, also from DARPA, these semantic detection algorithms will have to determine whether a media object has been generated or manipulated, to automate the analysis of media provenance and uncover the intent behind the falsification of various content.[66][62]
Another research program is the Preserving Media Trustworthiness in the Artificial Intelligence Era (PREMIER)[67] program, funded by the Italian Ministry of Education, University and Research (MIUR) and run by five Italian universities. PREMIER will pursue novel hybrid approaches to obtain forensic detectors that are more interpretable and secure.[68]
DEEP-VOICE[69] is a publicly available dataset intended for research purposes to develop systems to detect when speech has been generated with neural networks through a process called Retrieval-based Voice Conversion (RVC). Preliminary research showed numerous statistically-significant differences between features found in human speech and that which had been generated by Artificial Intelligence algorithms.
Public challenges
In the last few years, numerous challenges have been organized to push this field of audio deepfake research even further.
The most famous world challenge is the ASVspoof,[45] the Automatic Speaker Verification Spoofing and Countermeasures Challenge. This challenge is a bi-annual community-led initiative that aims to promote the consideration of spoofing and the development of countermeasures.[70]
Another recent challenge is the ADD[71]—Audio Deepfake Detection—which considers fake situations in a more real-life scenario.[72]
Also the Voice Conversion Challenge[73] is a bi-annual challenge, created with the need to compare different voice conversion systems and approaches using the same voice data.
^ abcdeKhanjani, Zahra; Watson, Gabrielle; Janeja, Vandana P. (2021-11-28). "How Deep Are the Fakes? Focusing on Audio Deepfake: A Survey". arXiv:2111.14203 [cs.SD].
^Zhang, Mingyang; Wang, Xin; Fang, Fuming; Li, Haizhou; Yamagishi, Junichi (2019-04-07). "Joint training framework for text-to-speech and voice conversion using multi-source Tacotron and WaveNet". arXiv:1903.12389 [eess.AS].
^ abSercan, Ö Arık; Jitong, Chen; Kainan, Peng; Wei, Ping; Yanqi, Zhou (2018). "Neural Voice Cloning with a Few Samples". Advances in Neural Information Processing Systems (NeurIPS 2018). 31 (published 12 October 2018): 10040–10050. arXiv:1802.06006.
^Kong, Jungil; Kim, Jaehyeon; Bae, Jaekyoung (2020-10-23). "HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis". arXiv:2010.05646 [cs.SD].
^Fraga-Lamas, Paula; Fernández-Caramés, Tiago M. (2019-10-20). "Fake News, Disinformation, and Deepfakes: Leveraging Distributed Ledger Technologies and Blockchain to Combat Digital Deception and Counterfeit Reality". IT Professional. 22 (2): 53–59. arXiv:1904.05386. doi:10.1109/MITP.2020.2977589.
Hey, Come On!Sampul Hey, Come On!Album studio karya ShinhwaDirilis28 Juni 2001Direkam2001GenreK-PopBahasaKoreanLabelSM EntertainmentProduserLee Soo ManKronologi Shinhwa Only One (2000)Only One 2000 Hey, Come On!(2001) My Choice(2002)My Choice2002 Hey, Come On! adalah album keempat dari Shinhwa memulai debutnya pada peringkat ke-3. Seperti album sebelumnya, Hey, Come On! diterima dengan baik oleh para penggemar dan judul lagu ini dengan cepat menanjak pada tangga lagu. Daftar lagu Informas...
У этого топонима есть и другие значения, см. Катино. ДеревняКатино 57°43′29″ с. ш. 41°00′38″ в. д.HGЯO Страна Россия Субъект Федерации Костромская область Муниципальный район Костромской Сельское поселение Минское История и география Высота центра 122 м Часовой поя
Antonio Jiménez kan verwijzen naar: Antonio Jiménez (atleet) Antoni Jiménez, een Catalaans voetballer Bekijk alle artikelen waarvan de titel begint met Antonio Jiménez of met Antonio Jiménez in de titel. Dit is een doorverwijspagina, bedoeld om de verschillen in betekenis of gebruik van Antonio Jiménez inzichtelijk te maken. Op deze pagina staat een uitleg van de verschillende betekenissen van Antonio Jiménez en verwijzingen daarnaartoe. Bent u hier via een pag...
Sara Stridsberg Sara Stridsberg en 2011Información personalNacimiento 29 de agosto de 1972 (51 años)municipio de Solna (Suecia) Nacionalidad SuecaInformación profesionalOcupación Traductora y escritora Cargos ocupados Seat 13 of the Swedish Academy (2016-2018) Miembro de Academia Sueca (2016-2018) [editar datos en Wikidata] Sara Stridsberg (Solna, 1972) escritora y traductora sueca. Desde 2016 es miembro de la Academia Sueca que otorga anualmente el premio Nobel de Lit...
As referências deste artigo necessitam de formatação. Por favor, utilize fontes apropriadas contendo título, autor e data para que o verbete permaneça verificável. (Agosto de 2021) Nesta lista estão as 24 cidades mais populosas do Sudão, todas com mais de cem mil habitantes. Ordenada por população e ainda estimativas das mesmas segundo o site [1] em 2010. Ondurmã, a cidade mais populosa do Sudão Cartum, a 2ª cidade mais populosa do Sudão Nº Cidade População 1 Ondurmã 2 568 5...
Cet article est une ébauche concernant le jeu vidéo. Vous pouvez partager vos connaissances en l’améliorant (comment ?) (voir l’aide à la rédaction). Nightmare in the DarkDéveloppeur Eleven / GavakingÉditeur SNKDate de sortie Arcade :Neo-Geo MVSGenre Plates-formesMode de jeu Un à deux joueursPlate-forme Arcade :Neo-Geo MVSmodifier - modifier le code - modifier Wikidata Nightmare in the Dark est un jeu vidéo de plates-formes développé par Eleven et Gavaking, et é...
Các thành phần phản biến của tenxơ ứng suất-năng lượng. Thuyết tương đối rộng G μ ν + Λ g μ ν = 8 π G c 4 T μ ν {\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={8\pi G \over c^{4}}T_{\mu \nu }} Dẫn nhập · Lịch sử · Phát biểu toán họcKiểm chứng Khái niệm cơ sởThuyết tương đối hẹpNguyên lý tương đươngTuyến thế giới · Hình h...
Richard Nikolaus di Coudenhove-Kalergi nel 1926 Il conte Richard Nikolaus di Coudenhove-Kalergi (in tedesco: Richard Nikolaus Eijiro Graf Coudenhove-Kalergi; in giapponese: リヒャルト・ニコラウス・栄次郎・クーデンホーフ=カレルギー Rihyaruto Nikorausu Eijirō Kūdenhōfu-Karerugī) (Tokyo, 17 novembre 1894 – Schruns, 27 luglio 1972) è stato un politico e filosofo austriaco, fondatore dell'Unione Paneuropea e primo uomo politico a proporre un progetto di Europa ...
American speed skater Mia KilburgKilburg in 2019Personal informationBirth nameMia ManganelloBorn (1989-10-27) October 27, 1989 (age 34)Fort Walton Beach, Florida[1]SportSportRoad bicycle racingSpeed skatingCycling careerPersonal informationHeight1.73 m (5 ft 8 in)Team informationCurrent teamDNA Pro CyclingDisciplineRoadRoleRiderProfessional teams2016–2017Visit Dallas DNA Pro Cycling2020–DNA Pro Cycling[2] Medal record Women's speed skating Rep...
Doge's Palace This is a list of buildings and structures in Venice, Italy. A Ala Napoleonica Arsenal Ateneo Veneto B Biblioteca Marciana C Campanile di San Marco Ca' da Mosto Ca' d'Oro Ca' Farsetti Ca' Foscari Ca' Loredan Ca' Pesaro Ca' Rezzonico Ca' Tron Ca' Vendramin Calergi Campanile di San Marco Campo San Polo Campo San Samuele Campo San Zanipolo Campo Santa Margherita Campo Sant'Angelo Corte del Milion D Dogana da Mar Doge's Palace F Fabbriche Nuove di Rialto (Erberia) Fabbriche Vecchie ...
Sri Lankan politician Hon.M. Velu KumarMPவேலு குமார் වේලු කුමාර්Member of the Parliament of Sri LankaIncumbentAssumed office August 2020ConstituencyKandy DistrictIn officeAugust 2015 – March 2020ConstituencyKandy DistrictMember of the Central Provincial CouncilIn office2013–2015ConstituencyKandy District Personal detailsBorn (1973-01-16) 16 January 1973 (age 50)Political partyDemocratic People's FrontOther politicalaffiliationsSama...
Bhutanese Lama (1594–1651) Not to be confused with Ngawang Namgyal (Rinpungpa). Zhabdrung in a seventeenth-century painting Ngawang Namgyal (later granted the honorific Zhabdrung Rinpoche, approximately at whose feet one submits) (Tibetan: ཞབས་དྲུང་ངག་དབང་རྣམ་རྒྱལ་, Wylie: zhabs drung ngag dbang rnam rgyal; alternate spellings include Zhabdrung Ngawang Namgyel; 1594–1651) and known colloquially as The Bearded Lama, was a Tibetan Buddhist l...
División Mayor del Fútbol Colombiano Acrónimo DimayorTipo Organización deportivaFundación 26 de junio de 1948 (75 años)Sede central Bogotá (Colombia)Deporte FútbolPresidente Fernando Jaramillo GiraldoSecretaria María del Pilar Avella[1]Gerente Deportivo Ricardo 'Gato' Pérez[2]Sitio web Dimayor.com.co[editar datos en Wikidata] La División Mayor del Fútbol Colombiano (Dimayor) es una entidad deportiva dependiente de la Federación Colombiana de Fútbol q...
For the song by Saul Williams, see Amethyst Rock Star. This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (September 2022) (Learn how and when to remove this template message) Cover of the first editio...
France national team. Group H was one of eight groups of the preliminary round of the 2023 FIBA Basketball World Cup. It took place from 25 to 29 August 2023 and consisted of Canada, Latvia, Lebanon, and France.[1][2] Each team played each other once, for a total of three games per team, with all games played at the Indonesia Arena, Jakarta, Indonesia. The top two teams advanced to the second round and the bottom two teams qualified for the classification rounds.[3] Te...
2000 video game This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dark Reign 2 – news · newspapers · books · scholar · JSTOR (August 2012) (Learn how and when to remove this template message) 2000 video gameDark Reign 2Developer(s)Pandemic StudiosPublisher(s)ActivisionDirector(s)Greg BorrudDesigner(s)Christoph...
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dogpatch, San Francisco – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) 37°45′38″N 122°23′28″W / 37.76060°N 122.39107°W / 37.76060; -122.39107 Neighborhood in...