Associated prime

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M (word play between the notation and the fact that an associated prime is an annihilator).[1]

In commutative algebra, associated primes are linked to the Lasker–Noether primary decomposition of ideals in commutative Noetherian rings. Specifically, if an ideal J is decomposed as a finite intersection of primary ideals, the radicals of these primary ideals are prime ideals, and this set of prime ideals coincides with [2] Also linked with the concept of "associated primes" of the ideal are the notions of isolated primes and embedded primes.

Definitions

A nonzero R-module N is called a prime module if the annihilator for any nonzero submodule N' of N. For a prime module N, is a prime ideal in R.[3]

An associated prime of an R-module M is an ideal of the form where N is a prime submodule of M. In commutative algebra the usual definition is different, but equivalent:[4] if R is commutative, an associated prime P of M is a prime ideal of the form for a nonzero element m of M or equivalently is isomorphic to a submodule of M.

In a commutative ring R, minimal elements in (with respect to the set-theoretic inclusion) are called isolated primes while the rest of the associated primes (i.e., those properly containing associated primes) are called embedded primes.

A module is called coprimary if xm = 0 for some nonzero m ∈ M implies xnM = 0 for some positive integer n. A nonzero finitely generated module M over a commutative Noetherian ring is coprimary if and only if it has exactly one associated prime. A submodule N of M is called P-primary if is coprimary with P. An ideal I is a P-primary ideal if and only if ; thus, the notion is a generalization of a primary ideal.

Properties

Most of these properties and assertions are given in (Lam 1999) starting on page 86.

  • If M' M, then If in addition M' is an essential submodule of M, their associated primes coincide.
  • It is possible, even for a commutative local ring, that the set of associated primes of a finitely generated module is empty. However, in any ring satisfying the ascending chain condition on ideals (for example, any right or left Noetherian ring) every nonzero module has at least one associated prime.
  • Any uniform module has either zero or one associated primes, making uniform modules an example of coprimary modules.
  • For a one-sided Noetherian ring, there is a surjection from the set of isomorphism classes of indecomposable injective modules onto the spectrum If R is an Artinian ring, then this map becomes a bijection.
  • Matlis' Theorem: For a commutative Noetherian ring R, the map from the isomorphism classes of indecomposable injective modules to the spectrum is a bijection. Moreover, a complete set of representatives for those classes is given by where denotes the injective hull and ranges over the prime ideals of R.
  • For a Noetherian module M over any ring, there are only finitely many associated primes of M.

For the case for commutative Noetherian rings, see also Primary decomposition#Primary decomposition from associated primes.

Examples

  • If the associated prime ideals of are the ideals and
  • If R is the ring of integers, then non-trivial free abelian groups and non-trivial abelian groups of prime power order are coprimary.
  • If R is the ring of integers and M a finite abelian group, then the associated primes of M are exactly the primes dividing the order of M.
  • The group of order 2 is a quotient of the integers Z (considered as a free module over itself), but its associated prime ideal (2) is not an associated prime of Z.

Notes

  1. ^ Picavet, Gabriel (1985). "Propriétés et applications de la notion de contenu". Communications in Algebra. 13 (10): 2231–2265. doi:10.1080/00927878508823275.
  2. ^ Lam 1999, p. 117, Ex 40B.
  3. ^ Lam 1999, p. 85.
  4. ^ Lam 1999, p. 86.

References

Read other articles:

2012 comedy play by Christopher Durang Vanya and Sonia and Masha and SpikeWritten byChristopher DurangCharacters Vanya Masha Spike Sonia Nina Cassandra Date premieredSeptember 7, 2012 (2012-09-07)Place premieredMcCarter Theatre, Princeton, New Jersey Vanya and Sonia and Masha and Spike is a comedy play written by Christopher Durang. The story revolves around the relationships of three middle-aged single siblings, two of whom live together, and takes place during a visit by the ...

 

كلية طب ويسكونسن   معلومات التأسيس 1893  الموقع الجغرافي إحداثيات 43°02′41″N 88°01′21″W / 43.0447°N 88.0225°W / 43.0447; -88.0225  الرمز البريدي 53226-0509[1]  البلد الولايات المتحدة  إحصاءات عدد الطلاب 1506 (سبتمبر 2020)[1]1617 (1 سبتمبر 2021)[2]  عدد الموظفين 6110 (سبتمبر 2020)...

 

Jeļena OstapenkoOstapenko di AS Terbuka 2016Nama lengkapJeļena OstapenkoKebangsaan LatviaLahir08 Juni 1997 (umur 26)Riga, LatviaTinggi177 cm (5 ft 10 in)PelatihAnabel Medina GarriguesTotal hadiah$ 3.588.260TunggalRekor (M–K)164–84 (66.13%)Gelar1 WTA, 7 ITFPeringkat tertinggi12 (12 Juni 2017)Peringkat saat ini37 (10 Juni 2019)Hasil terbaik di Grand Slam (tunggal)Australia TerbukaR3 (2017)Prancis TerbukaW (2017)WimbledonR2 (2015)AS TerbukaR2 (2015)GandaRekor (M

Johannes Weinberger Johannes Weinberger (* 2. Juli 1975 in St. Pölten; † 19. Mai 2022[1]) war ein österreichischer Schriftsteller und Musiker. Inhaltsverzeichnis 1 Leben 2 Preise 3 Werke 4 Weblinks 5 Einzelnachweise Leben Johannes Weinberger lebte seit 2000 als freier Schriftsteller in Wien. Seine Werke erschienen überwiegend im Luftschacht-Verlag. Johannes Weinberger war Mitglied der Grazer Autorenversammlung und erhielt für seine Arbeiten mehrere Auszeichnungen und Stipendien....

 

Pesta Olahraga Persemakmuran (bahasa Inggris: Commonwealth Games) adalah ajang olahraga multinasional. Diadakan setiap empat tahun sekali, melibatkan atlet-atlet terbaik dari negara-negara persemakmuran. Atlet yang ikut terlibat dalam ajang ini adalah sekitar 5000 altet. Commonwealth Games Federation (CGF) adalah organisasi yang bertanggung jawab untuk mengarahkan dan mengendalikan ajang ini. Logo resmi Pesta Olahraga Persemakmuran pada 2019 Pertama kali, ajang ini dikenal dengan British Game...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (January 2018) (Learn how and when to remove this template message) This article may rely excessively on sources...

Widely used analogy for explaining electrical circuits Not to be confused with Aircraft flight dynamics § Analogies. For other uses, see Analogy (disambiguation). Analogy between a hydraulic circuit (left) and an electronic circuit (right). Electronic-hydraulic analogies are the representation of electronic circuits by hydraulic circuits. Since electric current is invisible and the processes in play in electronics are often difficult to demonstrate, the various electronic components are...

 

Maryna LinchukMaryna LinchukLahirMaryna LinchukPekerjaanModel Maryna Linchuk (lahir 4 September 1987) adalah seorang model.[1] Karier Produk yang telah menjadikan Maryna sebagai modelnya ialah Belstaff, Christian Dior 'Miss Dior' fragrance, Christian Dior 'Addict' make-up, Club Monaco, Dolce & Gabbana, Donna Karan, Donna Karan White Gold, DSquared2, Escada 'Moon Sparkle' fragrance, Express, Forevermark, GAP, H&M, Joop! Jeans, Kenneth Cole, Lanca fragrance, Les Dessous Chic Lin...

 

Massively multiplayer online role-playing game This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Star Trek Online – news · newspapers · books · scholar · JSTOR (December 2021) (Learn how and when to remove this template message) 2010 video gameStar Trek OnlineCover art for Star Trek OnlineDeveloper(s)Cryptic S...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (مارس 2022) أرام هاكوبيان معلومات شخصية الميلاد 15 أغسطس 1979 (العمر 44 سنة)يريفان  الطول 1.75 م (5 قدم 9 بوصة) مركز اللعب مهاجم الجنسية أرمينيا  معلومات النادي الناد...

 

SIGMA 9813 frigate of the Royal Moroccan Navy Allal Ben Abdellah (background) sails in formation with USNS Trenton (foreground) and USS Ross (center) during African Lion 2021 exercise, 11 August 2021 History Morocco Name Allal Ben Abdellah (علال بن عبد الله) NamesakeAllal ben Abdallah Ordered6 February 2008 BuilderDamen Schelde Naval Shipbuilding, Vlissingen Laid downSeptember 2009 LaunchedOctober 2011 Commissioned8 September 2012 IdentificationPennant number: 615 Statu...

 

1992 British mockumentary directed by Lesley Manning For the fictional programme within Doctor Who, see Army of Ghosts § Production. GhostwatchThe BFI DVD release coverGenreHorrorMockumentaryCreated byStephen VolkWritten byStephen VolkDirected byLesley ManningStarringMichael ParkinsonSarah GreeneMike SmithCraig CharlesGillian BevanKeith FerrariTheme music composerPhilip ApplebyCountry of originUnited KingdomOriginal languageEnglishProductionExecutive producerRichard BrokeProducersRuth B...

Highway in Hong Kong Heung Yuen Wai HighwayHeung Yuen Wai Highway Cloudy Hill northbound entranceRoute informationMaintained by the Highways DepartmentLength11.1 km[1] (6.9 mi)Existed26 May 2019; 4 years ago (2019-05-26)–presentMajor junctionsSouth end Route 9 in Kau Lung HangMajor intersectionsSha Tau Kok RoadNorth endHeung Yuen Wai Control Point LocationCountryChinaSpecial administrative regionHong Kong Highway system Transport in Ho...

 

Kota SibolgaKotaTranskripsi bahasa daerah • Surat Batakᯘᯪᯅᯞᯬ᯲ᯎPanorama Kota Sibolga dari Tor Simarbarimbing LambangJulukan: Kota Berbilang KaumKota IkanMotto: Sibolga nauli(Batak Toba) Sibolga yang indahPetaKota SibolgaPetaTampilkan peta SumatraKota SibolgaKota Sibolga (Indonesia)Tampilkan peta IndonesiaKoordinat: 1°44′33″N 98°46′45″E / 1.7425°N 98.7792°E / 1.7425; 98.7792Negara IndonesiaProvinsiSumatera UtaraHa...

 

Salvezinescomune Salvezines – Veduta LocalizzazioneStato Francia RegioneOccitania Dipartimento Aude ArrondissementLimoux CantoneQuillan TerritorioCoordinate42°47′N 2°19′E / 42.783333°N 2.316667°E42.783333; 2.316667 (Salvezines)Coordinate: 42°47′N 2°19′E / 42.783333°N 2.316667°E42.783333; 2.316667 (Salvezines) Altitudine500 m s.l.m. Superficie20,2 km² Abitanti83[1] (2009) Densità4,11 ab./km² Altre informa...

Autonomous county in Hunan, People's Republic of ChinaJianghua County 江华县KianghwaAutonomous countyJianghuaLocation in HunanCoordinates: 25°10′59″N 111°34′44″E / 25.183°N 111.579°E / 25.183; 111.579[1]CountryPeople's Republic of ChinaProvinceHunanPrefecture-level cityYongzhouArea[2] • Total3,216.03 km2 (1,241.72 sq mi)Population (2010)[3] • Total410,527 • Density130/km2 (33...

 

Camille Dhont BiografiaNaixement12 juny 2001 (22 anys)Wevelgem (Bèlgica) ActivitatCamp de treballArts escèniques Ocupacióactriu, cantant Activitat2018  –Membre deLikeMe (fr) Segell discogràficCNR Camille Dhont (Wevelgem, 12 de juny de 2001) és una cantant i actriu belga.[1][2] Biografia Camille Dhont va formar part del conjunt del musical De ridders van de ronde keukentafel de Deep Bridge. Com a cantant, es va donar a conèixer per diversos vídeos a YouTube en...

 

Margot Kidder (2013) Margaret Ruth „Margot“ Kidder (* 17. Oktober 1948 in Yellowknife, Kanada; † 13. Mai 2018 in Livingston, Montana[1]) war eine kanadisch-US-amerikanische Schauspielerin. Ihre bekannteste Rolle war die der Lois Lane in den Superman-Filmen. Inhaltsverzeichnis 1 Leben und Leistungen 2 Politisches Engagement 3 Filmografie (Auswahl) 4 Weblinks 5 Einzelnachweise Leben und Leistungen Sie wurde 1948 in den kanadischen Nordwest-Territorien als Tochter von Jill und Kend...

Centro Cultural de la Universidad de San Marcos puede referirse también a la Casona de la Universidad de San Marcos, su actual principal centro cultural. Centro Cultural Colegio Realde la Universidad Nacional Mayor de San Marcos  Patrimonio de la Humanidad (parte de «Centro histórico de Lima», n.º ref. 500) (1991)Enlace a ficha de Patrimonio de la Humanidad. Patrimonio Cultural de la Nación (1972) LocalizaciónPaís Perú PerúLocalidad LimaCoordenadas 12°02′50″S 77°01′26...

 

У этого термина существуют и другие значения, см. Хот-Спрингс. ГородХот-СпрингсHot Springs, Arkansas 34°29′50″ с. ш. 93°03′19″ з. д.HGЯO Страна  США Штат Арканзас Округ Гарленд История и география Основан 1804 Первое упоминание 1673 Площадь 85.5 км² Высота центра 182 м Часовой пояс UT...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!