Chevalley (1945) showed that every local ring of an algebraic variety is analytically unramified.
Schmidt (1936) gave an example of an analytically ramified reduced local ring. Krull showed that every 1-dimensional normal Noetherian local ring is analytically unramified; more precisely he showed that a 1-dimensional normal Noetherian local domain is analytically unramified if and only if its integral closure is a finite module.[citation needed] This prompted Zariski (1948) to ask whether a local Noetherian domain such that its integral closure is a finite module is always analytically unramified. However Nagata (1955) gave an example of a 2-dimensional normal analytically ramified Noetherian local ring. Nagata also showed that a slightly stronger version of Zariski's question is correct: if the normalization of every finite extension of a given Noetherian local ring R is a finite module, then R is analytically unramified.
There are two classical theorems of David Rees (1961) that characterize analytically unramified rings. The first says that a Noetherian local ring (R, m) is analytically unramified if and only if there are a m-primary ideal J and a sequence such that , where the bar means the integral closure of an ideal. The second says that a Noetherian local domain is analytically unramified if and only if, for every finitely-generated R-algebra S lying between R and the field of fractions K of R, the integral closure of S in K is a finitely generated module over S. The second follows from the first.
Nagata's example
Let K0 be a perfect field of characteristic 2, such as F2.
Let K be K0({un, vn : n ≥ 0}), where the un and vn are indeterminates.
Let T be the subring of the formal power series ringK [[x,y]] generated by K and K2 [[x,y]] and the element Σ(unxn+ vnyn). Nagata proves that T is a normal local noetherian domain whose completion has nonzero nilpotent elements, so T is analytically ramified.
Rees, D. (1961), "A note on analytically unramified local rings", J. London Math. Soc., 36: 24–28, MR0126465
Schmidt, Friedrich Karl (1936), "Über die Erhaltung der Kettensätze der Idealtheorie bei beliebigen endlichen Körpererweiterungen", Mathematische Zeitschrift, 41 (1): 443–450, doi:10.1007/BF01180433