Alternative stress measures

In continuum mechanics, the most commonly used measure of stress is the Cauchy stress tensor, often called simply the stress tensor or "true stress". However, several alternative measures of stress can be defined:[1][2][3]

  1. The Kirchhoff stress ().
  2. The nominal stress ().
  3. The Piola–Kirchhoff stress tensors
    1. The first Piola–Kirchhoff stress (). This stress tensor is the transpose of the nominal stress ().
    2. The second Piola–Kirchhoff stress or PK2 stress ().
  4. The Biot stress ()

Definitions

Consider the situation shown in the following figure. The following definitions use the notations shown in the figure.

Quantities used in the definition of stress measures

In the reference configuration , the outward normal to a surface element is and the traction acting on that surface (assuming it deforms like a generic vector belonging to the deformation) is leading to a force vector . In the deformed configuration , the surface element changes to with outward normal and traction vector leading to a force . Note that this surface can either be a hypothetical cut inside the body or an actual surface. The quantity is the deformation gradient tensor, is its determinant.

Cauchy stress

The Cauchy stress (or true stress) is a measure of the force acting on an element of area in the deformed configuration. This tensor is symmetric and is defined via

or

where is the traction and is the normal to the surface on which the traction acts.

Kirchhoff stress

The quantity,

is called the Kirchhoff stress tensor, with the determinant of . It is used widely in numerical algorithms in metal plasticity (where there is no change in volume during plastic deformation). It can be called weighted Cauchy stress tensor as well.

Piola–Kirchhoff stress

Nominal stress/First Piola–Kirchhoff stress

The nominal stress is the transpose of the first Piola–Kirchhoff stress (PK1 stress, also called engineering stress) and is defined via

or

This stress is unsymmetric and is a two-point tensor like the deformation gradient.
The asymmetry derives from the fact that, as a tensor, it has one index attached to the reference configuration and one to the deformed configuration.[4]

Second Piola–Kirchhoff stress

If we pull back to the reference configuration we obtain the traction acting on that surface before the deformation assuming it behaves like a generic vector belonging to the deformation. In particular we have

or,

The PK2 stress () is symmetric and is defined via the relation

Therefore,

Biot stress

The Biot stress is useful because it is energy conjugate to the right stretch tensor . The Biot stress is defined as the symmetric part of the tensor where is the rotation tensor obtained from a polar decomposition of the deformation gradient. Therefore, the Biot stress tensor is defined as

The Biot stress is also called the Jaumann stress.

The quantity does not have any physical interpretation. However, the unsymmetrized Biot stress has the interpretation

Relations

Relations between Cauchy stress and nominal stress

From Nanson's formula relating areas in the reference and deformed configurations:

Now,

Hence,

or,

or,

In index notation,

Therefore,

Note that and are (generally) not symmetric because is (generally) not symmetric.

Relations between nominal stress and second P–K stress

Recall that

and

Therefore,

or (using the symmetry of ),

In index notation,

Alternatively, we can write

Relations between Cauchy stress and second P–K stress

Recall that

In terms of the 2nd PK stress, we have

Therefore,

In index notation,

Since the Cauchy stress (and hence the Kirchhoff stress) is symmetric, the 2nd PK stress is also symmetric.

Alternatively, we can write

or,

Clearly, from definition of the push-forward and pull-back operations, we have

and

Therefore, is the pull back of by and is the push forward of .

Summary of conversion formula

Key:

Conversion formulae
Equation for
(non isotropy)
(non isotropy)
(non isotropy) (non isotropy)

See also

References

  1. ^ J. Bonet and R. W. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press.
  2. ^ R. W. Ogden, 1984, Non-linear Elastic Deformations, Dover.
  3. ^ L. D. Landau, E. M. Lifshitz, Theory of Elasticity, third edition
  4. ^ Three-Dimensional Elasticity. Elsevier. 1 April 1988. ISBN 978-0-08-087541-5.

Read other articles:

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: 神奈川県立がんセンター – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年6月) 神奈川県立がんセンター 情報正式

 

Diedorf Gemeinde Dermbach Koordinaten: 50° 40′ N, 10° 7′ O50.66166666666710.124444444444400Koordinaten: 50° 39′ 42″ N, 10° 7′ 28″ O Höhe: 400 m Fläche: 4,76 km² Einwohner: 345 (31. Dez. 2017) Bevölkerungsdichte: 72 Einwohner/km² Eingemeindung: 1. Januar 2019 Postleitzahl: 36466 Vorwahl: 036966 Karte Lage von Diedorf in Dermbach Diedorf ist ein Ortsteil der Gemeinde Dermbach im Wartburgkreis in Thü...

 

Aimeric de Peguilhan, from a 13th-century chansonnier now in the Bibliothèque nationale de France Aimeric or Aimery de Peguilhan, Peguillan, or Pégulhan (c. 1170 – c. 1230) was a troubadour (fl. 1190–1221)[1] born in Peguilhan (near Saint-Gaudens), the son of a cloth merchant. Aimeric's first patron was Raimon V of Toulouse, followed by his son Raimon VI. However, he fled the region at the threat of the Albigensian Crusade and spent some time in Spain and ten years in Lo...

Guerra della Lega di Cambraiparte delle guerre d'Italia del XVI secoloL'Italia settentrionale nel 1494Data1508 - 1516 LuogoItalia, Francia Casus belliLega di Cambrai contro Venezia EsitoTrattato di Noyon, vittoria veneziana e francese Modifiche territorialiCremona torna a Milano Schieramenti1508–10:Lega di Cambrai Regno di Francia Stato Pontificio Sacro Romano Impero Regno di Aragona Ducato di Ferrara Ducato di Urbino Marchesato di Mantova Marchesato di Saluzzo Marchesato del Monferrato 1510

 

Discrimination or prejudice against Croats This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The neutrality of this article is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until conditions to do so are met. (April 2020) (Learn how and when to remove this template message) This article may relate to a different subject or has undue weight on ...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Conrad Swan – news · newspapers · books · scholar · JSTOR (January 2019) (Learn how and when to remove this template message) Sir Conrad SwanKCVO KGCN KCFO FSA FRHSCArms of Sir Conrad SwanGarter Principal King of ArmsIn office1992–1995MonarchElizabeth IIPrece...

El paramento define lo vertical de una construcción. Paramento exterior de la muralla de Mansilla de las Mulas, España. Un paramento es cada una de las caras de todo elemento constructivo vertical, como paredes o lienzos de muros.[1]​ En muchas ocasiones se hace referencia al paramento como la superficie de un muro. La cara que mira al exterior del edificio, o superficie, se denomina paramento exterior. En ingeniería hidráulica, se define como paramento al muro de contención de las...

 

Qatar direct broadcast satellite company This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (March 2017) (Learn how and when to remove this template message) Th...

 

9th-century Arabic poet and musician Ziryabزريابأبو الحسن علي بن نافعPersonal detailsBornAbu l-Hasan 'Ali Ibn Nafic. 789In the area of modern day Iraq, possibly Baghdad, Abbasid Caliphate[1]Diedc. 27 January 857 (aged 67–68)Córdoba, Emirate of CórdobaOccupationlinguist, geographer, poet, chemist, musician, singer astronomer, gastronomist, etiquettecouncillor, stylist Abu l-Hasan 'Ali Ibn Nafi', better known as Ziryab, Zeryab, or Zaryab (c. 789–...

Elang bondol Elang bondol di Manado, Sulawesi Utara Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Aves Ordo: Accipitriformes Famili: Accipitridae Genus: Haliastur Spesies: H. indus Nama binomial Haliastur indusBoddaert, 1783 Elang bondol (Haliastur indus) adalah spesies burung pemangsa dari famili Accipitridae. Deskripsi Elang bondol berkuran sedang (43–51 cm), memiliki sayap yang lebar dengan ekor pendek da...

 

Ficheiro:O Globo, 33º ano, nº 9758, quarta-feira, 26 fev. 1958, p. 3.jpgA trajetória do suposto disco voador sobre a Ilha da Trindade.O Caso da Ilha da Trindade relaciona-se à suposta aparição, em 16 de janeiro de 1958, de um objeto voador não-identificado sobre a Ilha da Trindade, o qual haveria sido avistado por alguns integrantes da tripulação do navio-escola Almirante Saldanha, da Marinha Brasileira, então ancorado na ilha. O caso Fotografia de Almiro Baraúna mostrando um apare...

 

Capital of Sorsogon, Philippines This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sorsogon City – news · newspapers · books · scholar · JSTOR (July 2019) (Learn how and when to remove this template message) Component city in Bicol Region, PhilippinesSorsogon CityComponent cityCity of SorsogonAerial view FlagS...

National motto of Greece For the book Freedom or Death by Nikos Kazantzakis, see Captain Michalis. For other uses, see Liberty or Death (disambiguation). Greek flag Eleftheria i thanatos (Greek: Ελευθερία ή θάνατος, IPA: [elefθeˈri.a i ˈθanatos]; 'Freedom or Death') is the motto of Greece.[1][2] It originated in the Greek songs of resistance that were powerful motivating factors for independence. It was adopted in 1814 by the Filiki Eteria, a secre...

 

Former railway station in Denbighshire, Wales Old ColwynThe site of the station in 2018General informationLocationColwyn, DenbighshireWalesCoordinates53°17′34″N 3°41′32″W / 53.2929°N 3.6923°W / 53.2929; -3.6923Grid referenceSH873787Platforms2Other informationStatusDisusedHistoryOriginal companyLondon and North Western RailwayPre-groupingLondon and North Western RailwayPost-groupingLondon, Midland and Scottish RailwayKey dates9 April 1884Opened[1]1 D...

 

K110 부전Bujeon Korean nameHangul부전역Hanja釜田驛Revised RomanizationBujeonnyeokMcCune–ReischauerPujŏnnyŏk General informationLocationBujeon-dong, Busanjin District, BusanSouth KoreaCoordinates35°09′51″N 129°03′38″E / 35.164227°N 129.060480°E / 35.164227; 129.060480Operated by KorailLine(s)Donghae LineBujeon LineConstructionStructure typeAbovegroundHistoryOpenedApril 1, 1943 Services Preceding station Busan Metro Following station Terminus Dong...

Condenados por la Inquisición, de Eugenio Lucas (siglo XIX, Museo del Prado). La Inquisición generalmente condenaba al culpable a ser azotado mientras recorría las calles, en cuyo caso (si se trataba de un varón) tenía que aparecer desnudo hasta la cintura, a menudo montado sobre un asno para que sufriera una mayor deshonra, siendo debidamente azotado por el verdugo con el número señalado de latigazos. Durante este recorrido por las calles, los transeúntes y los chiquillos mostraban s...

 

Indian reserve in Canada, One ArrowOne Arrow 95-1CIndian reserveOne Arrow Indian Reserve No. 95-1CLocation in SaskatchewanFirst NationOne ArrowCountryCanadaProvinceSaskatchewanArea[1] • Total227 ha (561 acres)Population (2016)[2] • Total10 • Density4.4/km2 (11/sq mi) One Arrow 95-1C is an Indian reserve of the One Arrow First Nation in Saskatchewan.[1][3] It is 9 kilometres southwest of Alvena. In the 2016...

 

This article is about the Upazila. For the Union, see Ghatail Union. For the Town, see Ghatail. You can help expand this article with text translated from the corresponding article in Bangla. (December 2019) Click [show] for important translation instructions. View a machine-translated version of the Bangla article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the transla...

Swedish actress This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Angela Kovács – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) Kov...

 

Sporting goods manufacturer based in Ogden, Utah This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (May 2016) (Learn how and when to remove this template message) GOODE Ski TechnologiesTypeCorporationIndustrySnow skiing / water skiing equipmentFounded1975HeadquartersOgden, UtahKey peopleDave Goode (founder)Products...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!