Agricultural hydrology

Agricultural hydrology is the study of water balance components intervening in agricultural water management, especially in irrigation and drainage.[1]

Illustration of some water balance components

Water balance components

Water balance components in agricultural land

The water balance components can be grouped into components corresponding to zones in a vertical cross-section in the soil forming reservoirs with inflow, outflow and storage of water:[2]

  1. the surface reservoir (S)
  2. the root zone or unsaturated (vadose zone) (R) with mainly vertical flows
  3. the aquifer (Q) with mainly horizontal flows
  4. a transition zone (T) in which vertical and horizontal flows are converted

The general water balance reads:

  • inflow = outflow + change of storage

and it is applicable to each of the reservoirs or a combination thereof.

In the following balances it is assumed that the water table is inside the transition zone.

Surface water balance

The incoming water balance components into the surface reservoir (S) are:

  1. Rai – Vertically incoming water to the surface e.g.: precipitation (including snow), rainfall, sprinkler irrigation
  2. Isu – Horizontally incoming surface water. This can consist of natural inundation or surface irrigation

The outgoing water balance components from the surface reservoir (S) are:

  1. Eva – Evaporation from open water on the soil surface (see Penman equation)
  2. Osu – Surface runoff (natural) or surface drainage (artificial)
  3. Inf – Infiltration of water through the soil surface into the root zone

The surface water balance reads:

  • Rai + Isu = Eva + Inf + Osu + Ws, where Ws is the change of water storage on top of the soil surface
Surface runoff in the Curve Number method
Example of a surface water balance
An example is given of surface runoff according to the Curve number method.[3] The applicable equation is:
  • Osu = (Rai – Ws)2 / (Pp – Ws + Rm)

where Rm is the maximum retention of the area for which the method is used

Normally one finds that Ws = 0.2 Rm and the value of Rm depends on the soil characteristics. The Curve Number method provides tables for these relations.

The method yields cumulative runoff values. To obtain runoff intensity values or runoff velocity (volume per unit of time) the cumulative duration is to be divided into sequential time steps (for example in hours).

Root zone water balance

The incoming water balance components into the root zone (R) are:

  1. Inf – Infiltration of water through the soil surface into the root zone
  2. Cap – Capillary rise of water from the transition zone

The outgoing water balance components from the surface reservoir (R) are:

  1. Era – Actual evaporation or evapotranspiration from the root zone
  2. Per – Percolation of water from the unsaturated root zone into the transition zone

The root zone water balance reads:

  • Inf + Cap = Era + Per + Wr, where Wr is the change of water storage in the root zone

Transition zone water balance

The incoming water balance components into the transition zone (T) are:

  1. Per – Percolation of water from the unsaturated root zone into the transition zone
  2. Lca – Infiltration of water from river, canal or drainage systems into the transition zone, often referred to as deep seepage losses
  3. Ugw – Vertically upward seepage of water from the aquifer into the saturated transition zone

The outgoing water balance components from the transition zone (T) are:

  1. Cap – Capillary rise of water into the root zone
  2. Dtr – Artificial horizontal subsurface drainage, see also Drainage system (agriculture)
  3. Dgw – Vertically downward drainage of water from the saturated transition zone into the aquifer

The water balance of the transition zone reads:

  • Per + Lca + Ugw = Cap + Dtr + Dgw + Wt, where Wt is the change of water storage in the transition zone noticeable as a change of the level of the water table.

Aquifer water balance

The incoming water balance components into the aquifer (Q) are:

  1. Dgw – Vertically downward drainage of water from the saturated transition zone into the aquifer
  2. Iaq – Horizontally incoming groundwater into the aquifer

The outgoing water balance components from the aquifer (Q) are:

  1. Ugw – Vertically upward seepage of water from the aquifer into the saturated transition zone
  2. Oaq – Horizontally outgoing groundwater from the aquifer
  3. Wel – Discharge from (tube)wells placed in the aquifer

The water balance of the aquifer reads:

  • Dgw + Iaq = Ugw + Wel + Oaq + Wq

where Wq is the change of water storage in the aquifer noticeable as a change of the artesian pressure.

Specific water balances

Combined balances

Water balances can be made for a combination of two bordering vertical soil zones discerned, whereby the components constituting the inflow and outflow from one zone to the other will disappear.
In long term water balances (month, season, year), the storage terms are often negligible small. Omitting these leads to steady state or equilibrium water balances.

Combination of surface reservoir (S)and root zone (R) in steady state yields the topsoil water balance :

  • Rai + Isu + Cap = Eva + Era + Osu + Per, where the linkage factor Inf has disappeared.

Combination of root zone (R) and transition zone (T) in steady state yields the subsoil water balance :

  • Inf + Lca + Ugw = Era + Dtr + Dgw, where Wr the linkage factors Per and Cap have disappeared.

Combination of transition zone (T) and aquifer (Q) in steady state yields the geohydrologic water balance :

  • Per + Lca + Iaq = Cap + Dtr + Wel + Oaq, where Wr the linkage factors Ugw and Dgw have disappeared.

Combining the uppermost three water balances in steady state gives the agronomic water balance :

  • Rai + Isu + Lca + Ugw = Eva + Era + Osu + Dtr + Dgw, where the linkage factors Inf, Per and Cap have disappeared.

Combining all four water balances in steady state gives the overall water balance :

  • Rai + Isu + Lca + Iaq = Eva + Era + Osu + Dtr + Wel + Oaq, where the linkage factors Inf, Per, Cap, Ugw and Dgw have disappeared.
Diagram for reuse of groundwater for irrigation by wells
Example of an overall water balance
An example is given of the reuse of groundwater for irrigation by pumped wells.

The total irrigation and the infiltration are:

  • Inf = Irr + Wel, where Irr = surface irrigation from the canal system, and Wel = the irrigation from wells

The field irrigation efficiency (Ff < 1) is:

  • Ff = Era / Inf, where Era = the evapotranspiration of the crop (consumptive use)

The value of Era is less than Inf, there is an excess of irrigation that percolates down to the subsoil (Per):

  • Per = Irr + Wel – Era, or:
  • Per = (1 − Ff) (Irr + Wel)

The percolation Per is pumped up again by wells for irrigation (Wel), hence:

  • Wel = Per, or:
  • Wel = (1 − Ff) (Irr + Wel), and therefore:
  • Wel / Irr = (1 − Ff) / Ff

With this equation the following table can be prepared:

  Ff   0.20     0.25     0.33     0.50     0.75  
  Well / Irr     4   3   2   1   0.33

It can be seen that with low irrigation efficiency the amount of water pumped by the wells (Wel) is several time greater than the amount of irrigation water brought in by the canal system (Irr). This is due to the fact that a drop of water must be recirculated on the average several times before it is used by the plants.

Water table outside transition zone

When the water table is above the soil surface, the balances containing the components Inf, Per, Cap are not appropriate as they do not exist. When the water table is inside the root zone, the balances containing the components Per, Cap are not appropriate as they do not exist. When the water table is below the transition zone, only the aquifer balance is appropriate.

Reduced number of zones

Saltmod water balance components

Under specific conditions it may be that no aquifer, transition zone or root zone is present. Water balances can be made omitting the absent zones.

Net and excess values

Vertical hydrological components along the boundary between two zones with arrows in the same direction can be combined into net values .
For example, : Npc = Per − Cap (net percolation), Ncp = Cap − Per (net capillary rise).
Horizontal hydrological components in the same zone with arrows in same direction can be combined into excess values .
For example, : Egio = Iaq − Oaq (excess groundwater inflow over outflow), Egoi = Oaq − Iaq (excess groundwater outflow over inflow).

Salt balances

Agricultural water balances are also used in the salt balances of irrigated lands.
Further, the salt and water balances are used in agro-hydro-salinity-drainage models like Saltmod.
Equally, they are used in groundwater salinity models like SahysMod which is a spatial variation of SaltMod using a polygonal network.

Irrigation and drainage requirements

The irrigation requirement (Irr) can be calculated from the topsoil water balance, the agronomic water balance or the overall water balance, as defined in the section "Combined balances", depending on the availability of data on the water balance components.
Considering surface irrigation, assuming the evaporation of surface water is negligibly small (Eva = 0), setting the actual evapotranspiration Era equal to the potential evapotranspiration (Epo) so that Era = Epo and setting the surface inflow Isu equal to Irr so that Isu = Irr, the balances give respectively:

  • Irr = Epo + Osu + Per − Rai − Cap
  • Irr = Epo + Osu + Dtr + Dgw − Rai − Lca − Ugw
  • Irr = Epo + Osu + Dtr + Oaq − Rai − Lca − Iaq

Defining the irrigation efficiency as IEFF = Epo/Irr, i.e. the fraction of the irrigation water that is consumed by the crop, it is found respectively that :

  • IEFF = 1 − (Osu + Per − Rai − Cap) / Irr
  • IEFF = 1 − (Osu + Dtr + Dgw − Rai − Lca − Ugw) / Irr
The drain discharge determines the drain spacing
  • IEFF = 1 − (Osu + Dtr + Oaq − Rai − Lca − Iaq) / Irr

Likewise the safe yield of wells, extracting water from the aquifer without overexploitation, can be determined using the geohydrologic water balance or the overall water balance, as defined in the section "Combined balances", depending on the availability of data on the water balance components.

Similarly, the subsurface drainage requirement can be found from the drain discharge (Dtr) in the subsoil water balance, the agronomic water balance, the geohydrologic water balance or the overall water balance.

In the same fashion, the well drainage requirement can be found from well discharge (Wel) in the geohydrologic water balance or the overall water balance.

The subsurface drainage requirement and well drainage requirement play an important role in the design of agricultural drainage systems (references:,[4][5] ).

Average climatic data and drainage in the Netherlands
Example of drainage and irrigation requirements
The drainage and irrigation requirements in The Netherlands are derived from the climatic characteristics (see figure).
  Climatic data  
in the figure (mm)
  Summer  
Apr–Aug
  Winter  
Sep–Mar
Annual
Precipitation P   360   360   720
Evaporation E   480     60   540
Change of storage ΔW –120 +120       0
Drainage requirement D        0   180   180
Irrigation requirement   variable       0 variable

The quantity of water to be drained in a normal winter is:

  • D = P – E – ΔW

According to the figure, the drainage period is from November to March (120 days) and the discharge of the drainage system is
D = 180 / 120 = 1.5 mm/day corresponding to 15 m3/day per ha.

During winters with more precipitation than normal, the drainage requirement increase accordingly.

The irrigation requirement depends on the rooting depth of the crops, which determines their capacity to make use of the water stored in the soil after winter. Having a shallow rooting system, pastures need irrigation to an amount of about half of the storage depletion in summer. Practically, wheat does not require irrigation because it develops deeper roots while during the maturing period a dry soil is favorable.

The analysis of cumulative frequency[6] of climatic data plays an important role in the determination of the irrigation and drainage needs in the long run.

See also

References

  1. ^ N.A. de Ridder and J. Boonstra, 1994. Analysis of Water Balances. In: H.P.Ritzema (ed.), Drainage Principles and Applications, Publication 16, p. 601–634. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. ISBN 90-70754-33-9
  2. ^ Drainage for Agriculture: Hydrology and Water Balances. Lecture notes, International Course on Land Drainage (ICLD), International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. On the web : [1]
  3. ^ "Publication 16, Chapter 4.1, Estimating Peak Runoff Rates". Retrieved 2010-08-09.
  4. ^ The energy balance of groundwater flow applied to subsurface drainage in anisotropic soils by pipes or ditches with entrance resistance. On the web : [2] Archived 2009-02-19 at the Wayback Machine . Paper based on: R. J. Oosterbaan, J. Boonstra and K. V. G. K. Rao, 1996, The energy balance of groundwater flow. Published in V. P. Singh and B. Kumar (eds.), Subsurface-Water Hydrology, p. 153–160, Vol.2 of Proceedings of the International Conference on Hydrology and Water Resources, New Delhi, India, 1993. Kluwer Academic Publishers, Dordrecht, The Netherlands. ISBN 978-0-7923-3651-8. On the web : [3]
  5. ^ Subsurface drainage by (tube)wells, 9 pp. Well spacing equations for fully or partially penetrating wells in uniform or layered aquifers with or without entrance resistance. International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. On the web : [4]
  6. ^ "CumFreq, software for cumulative frequency analysis". Retrieved 2010-08-16.
  • Website on agricultural hydrology : [5]
  • Free software for calculations on agricultural hydrology : [6]
  • Articles on agricultural hydrology : [7]
  • Frequently asked questions about agricultural hydrology : [8]
  • Case studies on agricultural hydrology : [9]
  • Water Footprint of Crops | Visual.ly

Read other articles:

خطوط دلتا الجوية الرحلة 1989 (شاهد الرحلة) الطائرة المنكوبة نفسها في مطار مانشستر الدولي في 1 أغسطس 2010 ملخص الحادث التاريخ 11 سبتمبر 2001 نوع الحادث اختطاف الموقع مطار كليفلاند هوبكنز الدولي ، كليفلاند ,  الولايات المتحدة الركاب 150 الطاقم 5 الجرحى 0 الوفيات 0 الناجون 155 (جميعهم) ال

 

DistortedPoster promosiGenreHukum ThrillerDitulis olehKim Hyun-jungSutradaraLee Jung-heumPemeranNamgoong MinNegara asalKorea SelatanBahasa asliKoreaProduksiDurasi60 menitDistributorSBSRilisJaringan asliSBSFormat gambar1080i (HDTV)Format audioDolby DigitalRilis asli17 Juli (2017-07-17) –12 September 2017 (2017-9-12)Pranala luarSitus web Distorted[1] (Hangul: 조작; Hanja: 造作; RR: Jojak; lit. Falsify) adalah serial televi...

 

City in Béni Mellal-Khénifra, MoroccoOued Zem وادي زمCity of MartyrsCityOued ZemShow map of MoroccoOued ZemShow map of AfricaCoordinates: 32°52′N 6°34′W / 32.867°N 6.567°W / 32.867; -6.567CountryMoroccoRegionBéni Mellal-KhénifraProvinceKhouribgaPopulation (2014)[1] • Total95,267Time zoneUTC+0 (WET) • Summer (DST)UTC+212 (WEST) Oued Zem is a city in Khouribga Province, Béni Mellal-Khénifra, Morocco. According to t...

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Maret 2016. AbadiNegaraIndonesiaWilayahLaut ArafuraDarat/Lepas pantaiLepas pantaiOperatorInpexSejarah ladangDitemukan2000Pengembangan dimulai2000Awal produksi2015ProduksiPerkiraan kandungan gas242×10^9 m310×10^12 cu ft Ladang gas Abadi adalah ladang...

 

Final Copa América CentenarioStadion MetLife.TurnamenCopa América Centenario Argentina Chili 0 0 Setelah perpanjangan waktuChili menang 4–2 dalam adu penaltiTanggal26 Juni 2016 (2016-06-26)StadionStadion MetLife, East RutherfordPemain Terbaik Claudio Bravo (Chile)[1]WasitHéber Lopes (Brasil)[2]Penonton82.026[3] Final Copa América Centenario merupakan pertandingan sepak bola yang berlangsung pada tanggal 26 Juni 2016 di Stadion MetLife, East Rutherford, New J...

 

1958 international treaty Convention on the Continental ShelfSigned29 April 1958LocationGeneva, SwitzerlandEffective10 June 1964Signatories43Parties58LanguagesChinese, English, French, Russian and SpanishFull text Convention on the Continental Shelf at Wikisourcelegal.un.org/   The global continental shelf, highlighted in cyan The Convention on the Continental Shelf was an international treaty created to codify the rules of international law relating to continental shelves. The trea...

Cimarron-class oiler For other ships with the same name, see USS Nantahala. History United States NameUSS Nantahala NamesakeNantahala River in North Carolina BuilderBethlehem Sparrows Point Shipyard Laid down31 October 1943 Launched29 April 1944 Commissioned19 June 1944 Decommissioned1 June 1950 Recommissioned29 December 1950 Decommissioned2 July 1973 Honours andawards6 battle stars (WWII) FateSold, 5 March 1975 General characteristics Class and typeCimarron-class replenishment oiler Displace...

 

  لمعانٍ أخرى، طالع فيل تايلور (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) فيل تايلور (بالإنجليزية: Phil Taylor)‏    معلومات شخصية اسم الولادة (بالإنجليزية: Philip John Taylor)‏  الميلاد 21 سبتمبر ...

 

1961 film The AssassinDirected byElio PetriScreenplay by Tonino Guerra Elio Petri Pasquale Festa Campanile Massimo Franciosa[1] Story by Tonino Guerra Elio Petri[1] Produced byFranco CristaldiStarringMarcello MastroianniCinematographyCarlo Di Palma[1]Edited byRuggero Mastroianni[1]Music byPiero Piccioni[1]Productioncompanies Titanus-Vides Societe Generale de Cinematographie Distributed byTitanus[1]Release date 1 April 1961 (1961-0...

Das Sas(s)anidenreich war das zweite persische Großreich des Altertums. Der Name des Reiches, dessen Eigenbezeichnung Eranschahr[1] lautete, leitet sich von der letzten vorislamischen persischen Dynastie der Sassaniden (persisch ساسانیان, DMG Sāsānīyān) ab. Das Reich existierte zwischen dem Ende des Partherreichs und der arabischen Eroberung Persiens, also von 224 bzw. 226 bis zur Schlacht von Nehawend im Jahr 642 beziehungsweise bis zum Tod des letzten Großkönigs Y...

 

1997 video game This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (October 2023) 1997 video gameQuake IIDeveloper(s)id Software[a]Publisher(s)Activision[b]Designer(s)Kevin CloudAmerican McGeeTim WillitsProgrammer(s)Brian HookGeorge John Cash IV[6]John CarmackArtist(s)Adrian CarmackKevin CloudPaul SteedComposer(s)Sonic MayhemSe...

 

National flag For other uses, see Flag of Georgia. GeorgiaFive Cross FlagUseNational flag, civil and state ensign Proportion2:3Adopted12th century (five cross flag)14 January 2004; 19 years ago (2004-01-14) (current design)DesignA white field with a centred red cross; a red Bolnur-Katskhuri cross centres each quarter.[1] UsePresidential StandardProportion1:1 Proportion1:1DesignFlag of the Minister of Defence Proportion1:1DesignFlag of the Chief of the General Staff P...

Canadian politician This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Jeanne St. Laurent – news · newspapers · books · scholar · JSTOR (December 2009) (Learn how and when to remove this template message) Jeanne St. LaurentSt. Laurent during her wedding in 1908BornJeanne Renault(1886-10-22)October 22, 1886Beauc...

 

Questa voce sull'argomento stagioni delle società calcistiche italiane è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Voce principale: Associazione Sportiva L'Aquila. Associazione Sportiva L'AquilaStagione 1964-1965Sport calcio Squadra L'Aquila Allenatore Aroldo Collesi PresidenteCarica vacante Serie C9º posto nel girone C. Maggiori presenzeCampionato: Grigoletti, Pesce (34) Miglior marcatoreCam...

 

Lago Williston (embalse) Lac Williston - Williston Lake Vista aérea del embalseUbicación geográficaContinente América del NorteRegión Columbia Británica InteriorÁrea protegida Parques provinciales de Muscovite Lakes, Butler Ridge, Heather-Dina Lakes y Ed Bird-EstellaCurso de agua Río de la PazCuenca Río MackenzieCoordenadas 56°N 124°O / 56, -124Ubicación administrativaPaís Canadá CanadáDivisión  Columbia BritánicaDatos generalesPropietario BC HydroOb...

ISTJAlbum studio karya NCT DreamDirilis17 Juli 2023 (2023-07-17)BahasaKoreaLabel SM Kakao Kronologi NCT Dream Candy(2022) ISTJ(2023) Kronologi NCT Perfume(2023) ISTJ(2023) Singel dalam album ISTJ Broken MelodiesDirilis: 19 Juni 2023 ISTJDirilis: 17 Juli 2023 ISTJ adalah album studio ketiga dari grup vokal pria Korea Selatan NCT Dream. Album ini akan dirilis pada tanggal 17 Juli 2023, oleh SM Entertainment melalui Kakao Entertainment, album ini terdiri dari 10 lagu dengan singel pendu...

 

Earkth > HIGHWAY STAR 株式会社HIGHWAY STARHIGHWAY STAR, Inc. 種類 株式会社本社所在地 日本〒150-0012東京都渋谷区広尾1丁目3番14号ASAX広尾ビル1階設立 2009年4月17日(株式会社アンバートーン) 2023年9月1日(新設分割による)業種 情報・通信業法人番号 9011001156763 事業内容 Artist Production アーティストのマネージメント コンサート・イベントの企画・制作 ファンクラブの運営業...

 

Liga Futsal Profesional IndonesiaMusim2018Tanggal20 Januari 2018 – 6 Mei 2018JuaraVamos FC MataramDegradasiAPK CPS FC SamarindaDumai FC RiauFKB 25 FC BanyumasSDR FC BinjaiKejuaraan Futsal Klub AFC 2018Vamos FC MataramKejuaraan Futsal Klub AFF 2018SKN FC KebumenJumlah pertandingan116Jumlah gol729 (6,28 per pertandingan)Pencetak golterbanyak Andri Kustiawan (Vamos)(27 gol)← 2017 2019 → Liga Futsal Profesional Indonesia 2018 adalah musim kesebelas kompetisi futsal Liga Futsal Profesio...

San Rafael Distrito Vista de San Rafael, Escazú San RafaelLocalización de San Rafael en Costa Rica San RafaelLocalización de San Rafael en Provincia de San José San RafaelCoordenadas 9°56′41″N 84°09′12″O / 9.9448051, -84.1532395Entidad Distrito • País  Costa Rica • Provincia  San José • Cantón  EscazúSíndico Ruth López Elizondo(PYPE)Eventos históricos   • Fundación 7 de diciembre de 1848Superficie  ...

 

Dizze side moat noch by de tiid brocht wurde. Jo wurde útnûge om dêr in begjin mei te meitsjen Age Hains Boersma (Starum, 12 maart 1982) is in Fryske earder prof-fuotballer dy't útkomt foar SC It Hearrenfean. Boersma wie sûnt it seizoen 2006/07 prof-fuotballer foar SC It Hearrenfean, dêrfoar spile hy foar QVC en VV Snits. Hy koe al yn it seizoen 2005/06 prof-fuotballer wurde, mar besleat earst syn stúdzje ôf te meitsjen oan de NHL yn Ljouwert, hy sloech dêrom oanbiedings fan It Hear...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!