Additive Schwarz method

In mathematics, the additive Schwarz method, named after Hermann Schwarz, solves a boundary value problem for a partial differential equation approximately by splitting it into boundary value problems on smaller domains and adding the results.

Overview

Partial differential equations (PDEs) are used in all sciences to model phenomena. For the purpose of exposition, we give an example physical problem and the accompanying boundary value problem (BVP). Even if the reader is unfamiliar with the notation, the purpose is merely to show what a BVP looks like when written down.

(Model problem) The heat distribution in a square metal plate such that the left edge is kept at 1 degree, and the other edges are kept at 0 degree, after letting it sit for a long period of time satisfies the following boundary value problem:
fxx(x,y) + fyy(x,y) = 0
f(0,y) = 1; f(x,0) = f(x,1) = f(1,y) = 0
where f is the unknown function, fxx and fyy denote the second partial derivatives with respect to x and y, respectively.

Here, the domain is the square [0,1] × [0,1].

This particular problem can be solved exactly on paper, so there is no need for a computer. However, this is an exceptional case, and most BVPs cannot be solved exactly. The only possibility is to use a computer to find an approximate solution.

Solving on a computer

A typical way of doing this is to sample f at regular intervals in the square [0,1] × [0,1]. For instance, we could take 8 samples in the x direction at x = 0.1, 0.2, ..., 0.8 and 0.9, and 8 samples in the y direction at similar coordinates. We would then have 64 samples of the square, at places like (0.2,0.8) and (0.6,0.6). The goal of the computer program would be to calculate the value of f at those 64 points, which seems easier than finding an abstract function of the square.

There are some difficulties, for instance it is not possible to calculate fxx(0.5,0.5) knowing f at only 64 points in the square. To overcome this, one uses some sort of numerical approximation of the derivatives, see for instance the finite element method or finite differences. We ignore these difficulties and concentrate on another aspect of the problem.

Solving linear problems

Whichever method we choose to solve this problem, we will need to solve a large linear system of equations. The reader may recall linear systems of equations from high school, they look like this:

2a + 5b = 12 (*)
6a − 3b = −3

This is a system of 2 equations in 2 unknowns (a and b). If we solve the BVP above in the manner suggested, we will need to solve a system of 64 equations in 64 unknowns. This is not a hard problem for modern computers, but if we use a larger number of samples, even modern computers cannot solve the BVP very efficiently.

Domain decomposition

Which brings us to domain decomposition methods. If we split the domain [0,1] × [0,1] into two subdomains [0,0.5] × [0,1] and [0.5,1] × [0,1], each has only half of the sample points. So we can try to solve a version of our model problem on each subdomain, but this time each subdomain has only 32 sample points. Finally, given the solutions on each subdomain, we can attempt to reconcile them to obtain a solution of the original problem on [0,1] × [0,1].

Size of the problems

In terms of the linear systems, we're trying to split the system of 64 equations in 64 unknowns into two systems of 32 equations in 32 unknowns. This would be a clear gain, for the following reason. Looking back at system (*), we see that there are 6 important pieces of information. They are the coefficients of a and b (2,5 on the first line and 6,−3 on the second line), and the right hand side (which we write as 12,−3). On the other hand, if we take two "systems" of 1 equation in 1 unknown, it might look like this:

System 1: 2a = 12
System 2: -3b = −3

We see that this system has only 4 important pieces of information. This means that a computer program will have an easier time solving two 1×1 systems than solving a single 2×2 system, because the pair of 1×1 systems are simpler than the single 2×2 system. While the 64×64 and 32×32 systems are too large to illustrate here, we could say by analogy that the 64×64 system has 4160 pieces of information, while the 32×32 systems each have 1056, or roughly a quarter of the 64×64 system.

Domain decomposition algorithm

Unfortunately, for technical reasons it is usually not possible to split our grid of 64 points (a 64×64 system of linear equations) into two grids of 32 points (two 32×32 systems of linear equations) and obtain an answer to the 64×64 system. Instead, the following algorithm is what actually happens:

1) Begin with an approximate solution of the 64×64 system.
2) From the 64×64 system, create two 32×32 systems to improve the approximate solution.
3) Solve the two 32×32 systems.
4) Put the two 32×32 solutions "together" to improve the approximate solution to the 64×64 system.
5) If the solution isn't very good yet, repeat from 2.

There are two ways in which this can be better than solving the base 64×64 system. First, if the number of repetitions of the algorithm is small, solving two 32×32 systems may be more efficient than solving a 64×64 system. Second, the two 32×32 systems need not be solved on the same computer, so this algorithm can be run in parallel to use the power of multiple computers.

In fact, solving two 32×32 systems instead of a 64×64 system on a single computer (without using parallelism) is unlikely to be efficient. However, if we use more than two subdomains, the picture can change. For instance, we could use four 16×16 problems, and there's a chance that solving these will be better than solving a single 64×64 problem even if the domain decomposition algorithm needs to iterate a few times.

A technical example

Here we assume that the reader is familiar with partial differential equations.

We will be solving the partial differential equation

uxx + uyy = f (**)

We impose boundedness at infinity.

We decompose the domain R² into two overlapping subdomains H1 = (− ∞,1] × R and H2 = [0,+ ∞) × R. In each subdomain, we will be solving a BVP of the form:

u( j )xx + u( j )yy = f in Hj
u( j )(xj,y) = g(y)

where x1 = 1 and x2 = 0 and taking boundedness at infinity as the other boundary condition. We denote the solution u( j ) of the above problem by S(f,g). Note that S is bilinear.

The Schwarz algorithm proceeds as follows:

  1. Start with approximate solutions u( 1 )0 and u( 2 )0 of the PDE in subdomains H1 and H2 respectively. Initialize k to 1.
  2. Calculate u( j )k + 1 = S(f,u(3 − j)k(xj)) with j = 1,2.
  3. Increase k by one and repeat 2 until sufficient precision is achieved.

See also

References

  • Barry Smith, Petter Bjørstad, William Gropp, Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press 1996
  • Andrea Toselli and Olof Widlund, Domain Decomposition Methods - Algorithms and Theory, Springer Series in Computational Mathematics, Vol. 34, 2004

Read other articles:

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2020) اضغط هنا للاطلاع على كيفية قراءة التصنيف بوقية ألفرد نويع عريضة الأجنحة المرتبة التصنيفية نويع  التصنيف العلمي النطاق: حقيقيات النوى المملكة: النباتات ال

Nor VaragavankՆոր ՎարագավանքNor VaragavankReligionAffiliationArmenian Apostolic ChurchLocationLocationNear Varagavan, Tavush Province, ArmeniaShown within ArmeniaGeographic coordinates40°55′30″N 45°12′06″E / 40.925°N 45.2018°E / 40.925; 45.2018ArchitectureStyleArmenianCompleted12th-14th centuries Nor Varagavank (Armenian: Նոր Վարագավանք) is a 13th-century Armenian Apostolic Church monastic ensemble situated 3.5 km southwe...

Raymond Kopa De Ballon d'Or 1958 was de 3e editie van de voetbalprijs georganiseerd door het Franse tijdschrift France Football. De prijs werd gewonnen door de Fransman Raymond Kopa (Real Madrid). De jury was samengesteld uit 16 journalisten die aangesloten waren bij de volgende verenigingen van de UEFA: West-Duitsland, Oostenrijk, België, Tsjecho-Slowakije, Schotland, Spanje, Frankrijk, Hongarije, Engeland, Italië, Nederland, Portugal, Zweden, Zwitserland, Turkije en Joegoslavië. De resul...

Die Liste von Sakralbauten in Laatzen nennt Kirchengebäude und andere Sakralbauten in Laatzen, Region Hannover, Niedersachsen. Liste Bild Name Stadtteil Koordinaten Konfession der Gemeinde Christ Embassy Alt-Laatzen 52° 18′ 54,5″ N, 9° 47′ 16,9″ O52.315149.78803 freikirchlich Immanuel-Kirche Alt-Laatzen 52° 18′ 52,1″ N, 9° 47′ 9,2″ O52.3144722222229.7858888888889 evangelisch-lutherisch Kapelle Alt-Laatzen 52°...

1999 film FlawlessTheatrical release posterDirected byJoel SchumacherWritten byJoel SchumacherProduced byJoel SchumacherJane RosenthalRobert De Niro (uncredited)Neil MachlisStarringRobert De NiroPhilip Seymour HoffmanBarry MillerChris BauerWilson Jermaine HerediaDaphne Rubin-VegaCinematographyDeclan QuinnEdited byMark StevensMusic byBruce RobertsProductioncompanyMetro-Goldwyn-MayerDistributed byMGM Distribution Co.Release date November 26, 1999 (1999-11-26) Running time112 minu...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2018) باسيندالي (جبنة) أسماء أخرى باسشيندايلي بلد المنشأ بلجيكا المنطقة فلاندرز الغربية المدينة باسيندالي  المكونات الرئيسية حليب الأبقار مبستر نعم القوام شبه...

Myroxylon balsamum Дерево бальзаму ТолуMyroxylon balsamum var. balsamum Дерево перуанського бальзамуMyroxylon balsamum var. pereirae Охоронний статус Найменший ризик (МСОП 3.1)[1] Біологічна класифікація Царство: Рослини (Plantae) Клада: Судинні рослини (Tracheophyta) Клада: Покритонасінні (Angiosperms) Клада: Евдикоти...

Overview of NES model variants The original Family Computer (Famicom) model with wired controllers The Nintendo Entertainment System (NES), an 8-bit third-generation home video game console produced by Nintendo, had numerous model variants produced throughout its lifetime. It was originally released in 1983 as the Family Computer[a] (and widely known as the Famicom[b]) in Japan, with design work led by Masayuki Uemura. Nintendo intentionally redesigned it as the NES in North A...

  提示:此条目的主题不是中泰關係。 中華民國與泰國關係 中華民國 泰國 代表機構駐泰國台北經濟文化辦事處泰國貿易經濟辦事處代表代表 張俊福 大使[註 1][4]代理 馬化欣[5]Sunh Arunrugstichai 中華民國與泰國關係是指中華民國與泰王國(舊稱暹羅)之間的關係。1946-1975年,兩國有官方外交關係。泰国是最后一个与中華民國断交的东南亚国家,斷交後

Piazza di Spagnaimmagine tratta dalla sigla d'apertura della miniseriePaeseItalia Anno1992 Formatoserie TV Generecommedia, drammatico, sentimentale Episodi5 Durata500 min (completa) Lingua originaleitaliano CreditiRegiaFlorestano Vancini SoggettoCesare Frugoni, Aida Mangia, Massimo Russo, Ugo Pirro, Umberto Mattone, Florestano Vancini SceneggiaturaMassimo Russo, Ugo Pirro, Umberto Mattone, Aida Mangia, Cesare Frugoni, Florestano Vancini Interpreti e personaggi Lorella Cuccarini: Annab...

Owen RobertsHakim Mahkamah Agung Amerika SerikatMasa jabatan2 Juni 1930 – 31 Juli 1945 Informasi pribadiKebangsaanAmerika SerikatProfesiHakimSunting kotak info • L • B Owen Roberts adalah hakim Mahkamah Agung Amerika Serikat. Ia mulai menjabat sebagai hakim pada mahkamah tersebut pada tanggal 2 Juni 1930. Masa baktinya sebagai hakim berakhir pada tanggal 31 Juli 1945.[1] Referensi ^ Justices 1789 to Present. Washington, D.C.: Mahkamah Agung Amerika Serikat. Di...

World championship The FIL World Luge Natural Track Championships, part of the International Luge Federation (FIL) have taken place on an almost biennial basis in non-Winter Olympics years since 1979. These championships are shown for natural tracks. See FIL World Luge Championships for all artificial track events that have taken place since 1955. Host cities 1979: Inzing, Austria 1980: Moos in Passeier, Italy 1982: Feld am See, Austria 1984: Kreuth, West Germany 1986: Fénis-Aosta, Italy 198...

العناية بالحيوانات هواية تتضمن تربية حيوان منزلي أو حيوان مستأنس. قد تشمل هذه العملية امتلاك الحيوانات[1] واستعراضها وإشراكها في مسابقات أخرى ورعايتها. قد يجمع الهواة ببساطة عينات من الحيوانات في حظائر مناسبة كالأحواض المائية[2] والحظائر والأقفاص. بعض الهواة الذين...

Village in Devon, England Human settlement in EnglandBradifordView of Bradiford from Poleshill LaneBradifordLocation within DevonOS grid referenceSS551342Shire countyDevonRegionSouth WestCountryEnglandSovereign stateUnited KingdomPoliceDevon and CornwallFireDevon and SomersetAmbulanceSouth Western List of places UK England Devon 51°05′21″N 4°04′11″W / 51.089185°N 4.069734°W / 51.089185; -4.069734 Bradiford is a village in Devon, England....

Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Tidak ada masalah yang dispesifikasikan. Tolong jelaskan masalahnya, atau hapus templat ini. (Pelajari cara dan kapan saatnya untuk menghapus pesan templat ini) AffandiLahirAffandi Koesoema(1907-05-18)18 Mei 1907Cirebon, Jawa Barat, Hindia BelandaMeninggal23 Mei 1990(1990-05-23) (umur&...

Lesoto Este artigo é parte da série: Política e governo doLesoto Rei Letsie III Primeiro-Ministro Pakalitha Mosisili Parlamento Senado Assembleia Nacional Partidos políticos Eleições: 2007 Distritos Relações Exteriores Atlasverdiscutireditar

NGC 1196   الكوكبة النهر[1]  رمز الفهرس NGC 1196 (الفهرس العام الجديد)2MASX J03033518-1204349 (Two Micron All Sky Survey, Extended source catalogue)PGC 11522 (فهرس المجرات الرئيسية)MCG-02-08-042b (فهرس المجرات الموروفولوجي)GSC 05290-00009 (دليل النجم المفهرس)6dFGS gJ030335.2-120435 (6dF Galaxy Survey)LEDA 11522 (ليون-ميودون قاعدة بيانات خارج المجرة)G...

Gnoma pulverea Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Gnoma Spesies: Gnoma pulverea Gnoma pulverea adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Gnoma, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabkan kerusakan pada batang kayu hidup atau kayu yang tel...

Soviet Union musical band This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Alyans band – news · newspapers · books · scholar · JSTOR (October 2020) AlyansFrom left to right: Mitya Zhuravlev, Igor Zhuravlev, Andrei TumanovBackground informationAlso known asAllianceOriginMoscow, Russian SFSR, Sov...

SMA Negeri 1 SidikalangInformasiDidirikan17 Januari 1962JenisNegeriAkreditasiAKepala SekolahSilas Sihombing[1]Jumlah kelas36 kelas termasuk MIA dan IISJurusan atau peminatanMatematika dan Ilmu Alam dan Ilmu Ilmu SosialRentang kelasX-XIIKurikulumKTSP dan Kurikulum 2013StatusSekolah RujukanAlamatLokasiJalan Dr. F.L. Tobing No. 1, Sidikalang, Dairi, Sumatera Utara, IndonesiaTel./Faks.+62-627-21232Situs webhttps://smanegeri1sidikalang.sch.id/Surelhttps://info@smanegeri1sidi...