Adding machine

A Resulta - BS 7 adding machine
An older adding machine. Its mechanism is similar to a car odometer.
Adding machine for the Australian pound c.1910, note the complement numbering, and the columns set up for shillings and pence.

An adding machine is a class of mechanical calculator, usually specialized for bookkeeping calculations. In the United States, the earliest adding machines were usually built to read in dollars and cents. Adding machines were ubiquitous office equipment until they were phased out in favor of electronic calculators in the 1970s and by personal computers beginning in about 1985. The older adding machines were rarely seen in American office settings by the year 2000.

Blaise Pascal and Wilhelm Schickard were the two original inventors of the mechanical calculator in 1642.[1] For Pascal, this was an adding machine that could perform additions and subtractions directly and multiplication and divisions by repetitions, while Schickard's machine, invented several decades earlier, was less functionally efficient but was supported by a mechanised form of multiplication tables. These two were followed by a series of inventors and inventions leading to those of Thomas de Colmar, who launched the mechanical calculator industry in 1851 when he released his simplified arithmometer (it took him thirty years to refine his machine, patented in 1820, into a simpler and more reliable form). However, they did not gain widespread use until Dorr E. Felt started manufacturing his comptometer (1887) and Burroughs started the commercialization of differently conceived adding machines (1892).[2]

Operation

To add a new list of numbers and arrive at a total, the user was first required to "ZERO" the machine. Then, to add sets of numbers, the user was required to press numbered keys on a keyboard, which would remain depressed (rather than immediately rebound like the keys of a computer keyboard or typewriter or the buttons of a typical modern machine). The user would then pull the crank, which caused the numbers to be shown on the rotary wheels, and the keys to be released (i.e. to pop back up) in preparation for the next input. To add, for example, the amounts of 30.72 and 4.49 (which, in adding machine terms, on a decimal adding machine is 3,072 plus 449 "decimal units"), the following process took place: Press the 3 key in the column fourth from the right (multiples of one thousand), the 7 key in the column second from right (multiples of ten) and the 2 key in the rightmost column (multiples of 1). Pull the crank. The rotary wheels now showed 3072. Press the 4 key in the third column from the right, the 4 key in the second column from right, and the 9 key in the rightmost column. Pull the crank. The rotary wheels now show a running 'total' of 3521 which, when interpreted using the decimal currency colour-coding of the key columns, equates to 35.21. Keyboards typically did not have or need 0 (zero) keys; one simply did not press any key in the column containing a zero. Trailing zeros (those to the right of a number), were there by default because when a machine was zeroed, all numbers visible on the rotary wheels were reset to zero.

A manual adding machine manufactured in the 1950s.

Subtraction was impossible, except by adding the complement of a number (for instance, subtract 2.50 by adding 9,997.50).

Multiplication was a simple process of keying in the numbers one or more columns to the left and repeating the "addition" process. For example, to multiply 34.72 by 102, key in 3472, pull crank, repeat once more. Wheels show 6944. Key in 3472(00), pull crank. Wheels now show 354144, or 3,541.44.

A later adding machine, called the comptometer, did not require that a crank be pulled to add. Numbers were input simply by pressing keys. The machine was thus driven by finger power. Multiplication was similar to that on the adding machine, but users would "form" up their fingers over the keys to be pressed and press them down the multiple of times required. Using the above example, four fingers would be used to press down twice on the 3 (fourth column), 4 (third column), 7 (second column) and 2 (first column) keys. That finger shape would then move left two columns and press once. Usually a small crank near the wheels would be used to zero them. Subtraction was possible by adding complementary numbers; keys would also carry a smaller, complementary digit to help the user form complementary numbers. Division was also possible by putting the dividend to the left end and performing repeated subtractions by using the complementary method.[3]

Some adding machines were electromechanical – an old-style mechanism, but driven by electric power.

Some "ten-key" machines had input of numbers as on a modern calculator – 30.72 was input as 3, 0, 7, 2. These machines could subtract as well as add. Some could multiply and divide, although including these operations made the machine more complex. Those that could multiply, used a form of the old adding machine multiplication method. Using the previous example of multiplying 34.72 by 102, the amount was keyed in, then the 2 key in the "multiplication" key column was pressed. The machine cycled twice, then tabulated the adding mechanism below the keyboard one column to the right. The number keys remained locked down on the keyboard. The user now pressed the multiplication 0 key which caused tabulation of the adding mechanism one more column to the right, but did not cycle the machine. Now the user pressed the multiplication 1 key. The machine cycled once. To see the total the user was required to press a Total key and the machine would print the result on a paper tape, release the locked down keys, reset the adding mechanism to zero and tabulate it back to its home position.

Modern adding machines are like simple calculators. They often have a different input system, though.

To figure this out Type this on the adding machine
2+17+5=? 2 + 17 + 5 + T
19-7=? 19 + 7 - T
38-24+10=? 38 + 24 - 10 + T
7×6=? 7 × 6 =
18/3=? 18 ÷ 3 =
(1.99×3)+(.79×8)+(4.29×6)=? 1.99 × 3 = + .79 × 8 = + 4.29 × 6 = + T
Note: Sometimes the adding machine will have a key labeled × instead of T. In this case, substitute × for T in the examples above. Alternatively, the plus key may continuously total instead of either a × or T key. Sometimes, the plus key is even labeled thus: +=

Burroughs's calculating machine

Patent drawing for Burroughs's calculating machine, 1888.

William Seward Burroughs received a patent for his adding machine on August 25, 1888. He was a founder of American Arithmometer Company, which became Burroughs Corporation and evolved to produce electronic billing machines and mainframes, and eventually merged with Sperry to form Unisys. The grandson of the inventor of the adding machine is Beat author William S. Burroughs; a collection of his essays is called The Adding Machine.

See also

Notes

  1. ^ see things-that-count.net and in particular, Schickard versus Pascal - an empty debate? Archived April 8, 2014, at the Wayback Machine
  2. ^ J.A.V. Turck, Origin of modern calculating machines, The western society of engineers, 1921, p. 143
  3. ^ Easy Instructions for Operation the Controlled Key Comptometer

Sources

  • Marguin, Jean (1994). Histoire des instruments et machines à calculer, trois siècles de mécanique pensante 1642–1942 (in French). Hermann. ISBN 978-2-7056-6166-3.
  • Taton, René (1963). Le calcul mécanique. Que sais-je ? n° 367 (in French). Presses universitaires de France. pp. 20–28.

Read other articles:

1. FC Katowice Datos generalesNombre 1. Erster Fussball-Club KattowitzFundación 1905Desaparición 1945Entrenador Mirosław WoźnicaInstalacionesEstadio TurngemeindeplatzeCapacidad 35.000Ubicación Katowice, Polonia Titular Alternativo Última temporadaLiga III Liga Página web oficial[editar datos en Wikidata] El 1. FC Katowice (en alemán: 1. FC Kattowitz) fue un equipo de fútbol con sede en la ciudad de Katowice, en Polonia. Fundado en 1905, fue uno de los equipos más exitosos ...

 

Les championnats d'Europe de karaté 1995 sont des championnats internationaux de karaté qui ont eu lieu à Helsinki, en Finlande, du 5 au 7 mai 1995[1]. Cette édition a été la trentième des championnats d'Europe de karaté seniors organisés par la Fédération européenne de karaté chaque année depuis 1966. Un total de 435 athlètes provenant de 37 pays y ont participé[2]. Résultats Épreuves individuelles Kata Kata individuel masculin Rang Pays Karatéka 1 France Michaël Milon[3]...

 

Pizzi Informasi pribadiNama lengkap Luis Miguel Afonso FernandesTanggal lahir 6 Oktober 1989 (umur 34)Tempat lahir Bragança, PortugalTinggi 1,72 m (5 ft 7+1⁄2 in)Posisi bermain PenyerangInformasi klubKlub saat ini BenficaNomor 21Karier junior1999–2007 Bragança2007–2008 BragaKarier senior*Tahun Tim Tampil (Gol)2007 Bragança 4 (1)2008–2012 Braga 2 (0)2008–2009 → Ribeirão (pinjaman) 25 (1)2009 → Covilhã (pinjaman) 14 (4)2010–2011 → Paços Ferreira (...

Джорджія Вливаються Фрейзер Названо на честь Георг III Країна  Канада і  США[1] Адміністративна одиниця Британська КолумбіяВотком[1]Сан-ХуанВашингтонКепітелКаувічен-ВелліНанаймо (регіональний округ)Комокс-ВелліСтраткона (Британська Колумбія)Катет (Брит

 

Die Liste der Kulturdenkmale im Großen Garten enthält die Kulturdenkmale des Großen Gartens in der Dresdner Gemarkung Altstadt II. Diese Gemarkung gliedert sich in die Stadtteile Johannstadt, Seevorstadt, Südvorstadt, Äußere Wilsdruffer Vorstadt und Großer Garten. Die Anmerkungen sind zu beachten. Diese Liste ist eine Teilliste der Liste der Kulturdenkmale in Dresden. Diese Liste ist eine Teilliste der Liste der Kulturdenkmale in Sachsen. Inhaltsverzeichnis 1 Legende 2 Liste 3 Anmerkun...

 

Pour les articles homonymes, voir Georges Lefebvre et Lefebvre. Georges LefebvreFonctionPrésidentSociété des études robespierristes1932-1940Albert MathiezAlbert SoboulBiographieNaissance 6 août 1874LilleDécès 28 août 1959 (à 85 ans)Boulogne-BillancourtNationalité françaiseFormation Faculté des lettres de Paris (doctorat) (jusqu'en 1924)Université de LilleActivités Historien, professeur des universités, historien de la Révolution françaiseAutres informationsA travaillé p...

Atrypanius conspersus Atrypanius conspersus Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Kelas: Insecta Ordo: Coleoptera Famili: Cerambycidae Genus: Atrypanius Spesies: Atrypanius conspersus Atrypanius conspersus adalah spesies kumbang tanduk panjang yang tergolong famili Cerambycidae. Spesies ini juga merupakan bagian dari genus Atrypanius, ordo Coleoptera, kelas Insecta, filum Arthropoda, dan kingdom Animalia. Larva kumbang ini biasanya mengebor ke dalam kayu dan dapat menyebabka...

 

SMA Negeri 1 TasikmalayaInformasiDidirikan1956JenisNegeriAkreditasiPeringkat A (Amat Baik) [1]Nomor Statistik Sekolah301327778001Kepala SekolahDr. H. Yonandi, S.Si. M.T (2023-sekarang)Jurusan atau peminatanMIPA, IPSRentang kelasX, XI (MIPA,IPS), XII (MIPA, IPS),KurikulumKurikulum Merdeka, Kurikulum 2013AlamatLokasiJl. Rumah Sakit No.28, Kota Tasikmalaya, Jawa Barat,  IndonesiaTel./Faks.0265-331690 / 0265-331690,0265-314861Koordinat7°19′56.82″S 108°13′24.6″E...

 

The areas of unrestricted submarine warfare in effect from 1 February 1917 The 9 January 1917 Crown Council meeting, presided over by German Emperor Wilhelm II, decided on the resumption of unrestricted submarine warfare by the Imperial German Navy during the First World War. The policy had been proposed by the German military in 1916 but was opposed by the civilian government under Chancellor Theobald von Bethmann Hollweg who feared it would alienate neutral powers, including the United Stat...

WTA-toernooi van Florianópolis 2023 Winnares in het enkelspel, Ajla Tomljanović Officiële naam MundoTênis Open Editie 2023 (5e editie) Stad, land Florianópolis, Brazilië Locatie Jurerê Sports Center Datum 20–26 november Auspiciën WTA Categorie WTA 125 Prijzengeld US$ 115.000 Deelnemers 32 enkel, 8 kwal. / 16 dubbel Ondergrond gravel, buiten Winnaar enkel Ajla Tomljanović Winnaars dubbel Sara Errani Léolia Jeanjean Vorige: 2016     Volgende: 2024 Porta...

 

直通特急直通特急的使用列車山陽5000系電動列車(日语:山陽電気鉄道5000系電車)(2021年1月 山陽鹽屋站至須磨浦公園站之間)概述日文名直通特急-ちょくつうとっきゅう 大阪梅田站 (阪神)-Chokutsū tokkyū类型特急列車状态運行中运营地区 日本大阪府、兵庫縣开行日期1998年2月15日[1]运营商阪神電氣鐵道、山陽電氣鐵道前运营商神戶高速鐵道始发站大阪梅田站终...

 

1961 NCAA Skiing ChampionshipsTournament informationSportCollege skiingLocation Hancock, VermontDatesMarch 9–11, 1961AdministratorNCAAHost(s)Middlebury CollegeVenue(s)Middlebury College Snow BowlTeams7Number ofevents4 (7 titles)Final positionsChampionsDenver (5th title)1st runners-upMiddlebury2nd runners-upColorado← 19601962 → Middleburyclass=notpageimage| Location in the United States The 1961 NCAA Skiing Championships were contested at the Middlebury College Sno...

2023 studio album by Laura PausiniAnime ParalleleStudio album by Laura PausiniReleased27 October 2023 (2023-10-27)Recorded2022–2023GenrePopLength52:57LanguageItalianSpanishPortugueseLabel Atlantic Warner ProducerFrancesco Katoo CatittiJulio ReyesMichelangeloPaolo CartaPlacido SalamoneSimon Says!Laura Pausini chronology Fatti sentire(2018) Anime Parallele(2023) Singles from Anime parellele Un buon inizioReleased: 10 March 2023 Il primo passo sulla lunaReleased: 16 June...

 

Buddy Complexバディ・コンプレックス(Badi Konpurekkusu)GenreMecha, laga, fiksi ilmiah Seri animeSutradaraYasuhiro TanabeSkenarioBC projectMusikTatsuya KatoStudioSunrisePelisensiNA FunimationUK Anime LimitedSaluranasliTokyo MX, TVA, ytv, BS11, Bandai ChannelTayang 5 Januari 2014 – 30 Maret 2014Episode13 (Daftar episode) MangaIlustratorHiroki OharaPenerbitASCII Media WorksMajalahDengeki DaiohDemografiShōnenTerbit27 Januari 2014 – 27 Oktober 2014Volume2 MangaBuddy Complex: Couplin...

 

В Википедии есть статьи о других людях с фамилией Третьяков. Роберт Степанович Третьяков Дата рождения 26 февраля 1936(1936-02-26) Место рождения Пермь, Свердловская область, РСФСР, СССР Дата смерти 10 ноября 1996(1996-11-10) (60 лет) Место смерти Харьков, Украина Гражданство (подданство) &#...

名探偵コナン > 名探偵コナン (アニメ) > Template:名探偵コナン映画作品 > 名探偵コナン ゼロの執行人 名探偵コナン ゼロの執行人 Detective ConanZero the Enforcer監督 立川譲脚本 櫻井武晴原作 青山剛昌出演者 高山みなみ古谷徹山崎和佳奈小山力也山口勝平林原めぐみ茶風林緒方賢一松井菜桜子岩居由希子高木渉大谷育江博多大吉上戸彩音楽 大野克夫主題歌 福...

 

Act of insulting or making light of a person or other thing Derision, Making fun of, Scoffing, and Ridicule redirect here. For other uses, see Bullying, Ridiculous, Mockery (disambiguation), and Ridicule (disambiguation). The Mockery of the Owl: a 17th-century painting by Jan van Kessel the Elder, loosely depicting a scene from the 13th-century poem, The Owl and the Nightingale, in which the owl is mocked for its characteristics by other birds. Mockery or mocking is the act of insulting or ma...

 

2005 film by Bobby Roth BerkeleyDirected byBobby RothWritten byBobby RothProduced byLon Bender Cosmas Paul Bolger Jr. Larison Clark Bobby Roth Jeffrey WhiteStarringNick Roth Laura Jordan Tom Morello Bonnie BedeliaCinematographySteve BurnsEdited byCarsten Becker Emily WallinMusic byChristopher FrankeDistributed byJeffrey White ProductionsRelease dates October 8, 2005 (2005-10-08) (Mill Valley Film Festival) October 12, 2007 (2007-10-12) (United States) Cou...

American hedge fund Pershing Square Capital Management, L.P.TypePrivateIndustryFinancial servicesHedge fundsFounded2003; 20 years ago (2003)[1]FounderBill AckmanHeadquartersNew York CityProductsInvestment fundsServicesInvestment managementAUM US$18.5 billion (2022)[2]Number of employees30Websitepershingsquareholdings.com Pershing Square Capital Management is an American hedge fund management company founded and run by Bill Ackman, headquartered in New Yo...

 

1999 film Excellent CadaversDirected byRicky TognazziWritten byPeter PruceBased onExcellent Cadaversby Alexander StilleProduced byRenato IzzoDavid NicholsStarringChazz PalminteriCinematographyAlessio Gelsini TorresiEdited byRoberto SilviMusic byMichael TaveraDistributed byHBO PicturesRelease date 1999 (1999) Running time86 minutesCountriesItalyUnited StatesLanguageItalianBudget$1,500,000 Excellent Cadavers (Italian: I giudici, and also known as Falcone)[1] is a 1999 television fi...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!