Acoustic wave

Acoustic waves are a type of energy propagation that travels through a medium, such as air, water, or solid objects, by means of adiabatic compression and expansion. Key quantities describing these waves include acoustic pressure, particle velocity, particle displacement, and acoustic intensity. The speed of acoustic waves depends on the medium's properties, such as density and elasticity, with sound traveling at approximately 343 meters per second in air, 1480 meters per second in water, and varying speeds in solids. Examples of acoustic waves include audible sound from speakers, seismic waves causing ground vibrations, and ultrasound used for medical imaging. Understanding acoustic waves is crucial in fields like acoustics, physics, engineering, and medicine, with applications in sound design, noise reduction, and diagnostic imaging.

Wave properties

An acoustic wave is a mechanical wave that transmits energy through the movements of atoms and molecules. Acoustic waves transmit through fluids in a longitudinal manner (movement of particles are parallel to the direction of propagation of the wave); in contrast to electromagnetic waves that transmit in transverse manner (movement of particles at a right angle to the direction of propagation of the wave). However, in solids, acoustic waves transmit in both longitudinal and transverse manners due to presence of shear moduli in such a state of matter.[1]

Acoustic wave equation

The acoustic wave equation describes the propagation of sound waves. The acoustic wave equation for sound pressure in one dimension is given by where

  • is sound pressure in Pa
  • is position in the direction of propagation of the wave, in m
  • is speed of sound in m/s
  • is time in s

The wave equation for particle velocity has the same shape and is given by where

For lossy media, more intricate models need to be applied in order to take into account frequency-dependent attenuation and phase speed. Such models include acoustic wave equations that incorporate fractional derivative terms, see also the acoustic attenuation article.

D'Alembert gave the general solution for the lossless wave equation. For sound pressure, a solution would be where

  • is angular frequency in rad/s
  • is time in s
  • is wave number in rad·m−1
  • is a coefficient without unit

For the wave becomes a travelling wave moving rightwards, for the wave becomes a travelling wave moving leftwards. A standing wave can be obtained by .

Phase

In a travelling wave pressure and particle velocity are in phase, which means the phase angle between the two quantities is zero.

This can be easily proven using the ideal gas law where

  • is pressure in Pa
  • is volume in m3
  • is amount in mol
  • is the universal gas constant with value

Consider a volume . As an acoustic wave propagates through the volume, adiabatic compression and decompression occurs. For adiabatic change the following relation between volume of a parcel of fluid and pressure holds where is the adiabatic index without unit and the subscript denotes the mean value of the respective variable.

As a sound wave propagates through a volume, the horizontal displacement of a particle occurs along the wave propagation direction. where

  • is cross-sectional area in m2

From this equation it can be seen that when pressure is at its maximum, particle displacement from average position reaches zero. As mentioned before, the oscillating pressure for a rightward traveling wave can be given by Since displacement is maximum when pressure is zero there is a 90 degrees phase difference, so displacement is given by Particle velocity is the first derivative of particle displacement: . Differentiation of a sine gives a cosine again

During adiabatic change, temperature changes with pressure as well following This fact is exploited within the field of thermoacoustics.

Propagation speed

The propagation speed, or acoustic velocity, of acoustic waves is a function of the medium of propagation. In general, the acoustic velocity c is given by the Newton-Laplace equation: where

Thus the acoustic velocity increases with the stiffness (the resistance of an elastic body to deformation by an applied force) of the material, and decreases with the density. For general equations of state, if classical mechanics is used, the acoustic velocity is given by with as the pressure and the density, where differentiation is taken with respect to adiabatic change.

Phenomena

Acoustic waves are elastic waves that exhibit phenomena like diffraction, reflection and interference. Note that sound waves in air are not polarized since they oscillate along the same direction as they move.

Interference

Interference is the addition of two or more waves that results in a new wave pattern. Interference of sound waves can be observed when two loudspeakers transmit the same signal. At certain locations constructive interference occurs, doubling the local sound pressure. And at other locations destructive interference occurs, causing a local sound pressure of zero pascals.

Standing wave

A standing wave is a special kind of wave that can occur in a resonator. In a resonator superposition of the incident and reflective wave occurs, causing a standing wave. Pressure and particle velocity are 90 degrees out of phase in a standing wave.

Consider a tube with two closed ends acting as a resonator. The resonator has normal modes at frequencies given by where

  • is the speed of sound in m/s
  • is the length of the tube in m

At the ends particle velocity becomes zero since there can be no particle displacement. Pressure however doubles at the ends because of interference of the incident wave with the reflective wave. As pressure is maximum at the ends while velocity is zero, there is a 90 degrees phase difference between them.

Reflection

An acoustic travelling wave can be reflected by a solid surface. If a travelling wave is reflected, the reflected wave can interfere with the incident wave causing a standing wave in the near field. As a consequence, the local pressure in the near field is doubled, and the particle velocity becomes zero.

Attenuation causes the reflected wave to decrease in power as distance from the reflective material increases. As the power of the reflective wave decreases compared to the power of the incident wave, interference also decreases. And as interference decreases, so does the phase difference between sound pressure and particle velocity. At a large enough distance from the reflective material, there is no interference left anymore. At this distance one can speak of the far field.

The amount of reflection is given by the reflection coefficient which is the ratio of the reflected intensity over the incident intensity

Absorption

Acoustic waves can be absorbed. The amount of absorption is given by the absorption coefficient which is given by where

Often acoustic absorption of materials is given in decibels instead.

Layered media

When an acoustic wave propagates through a non-homogeneous medium, it will undergo diffraction at the impurities it encounters or at the interfaces between layers of different materials. This is a phenomenon very similar to that of the refraction, absorption and transmission of light in Bragg mirrors. The concept of acoustic wave propagation through periodic media is exploited with great success in acoustic metamaterial engineering.[2]

The acoustic absorption, reflection and transmission in multilayer materials can be calculated with the transfer-matrix method.[3]

See also

References

  1. ^ Leisure, Robert G. (2017-06-09). "Ultrasonic Spectroscopy: Applications in Condensed Matter Physics and Materials Science". Cambridge University Press. doi:10.1017/9781316658901.004. ISBN 978-1-107-15413-1. {{cite journal}}: Cite journal requires |journal= (help)
  2. ^ Gorishnyy, Taras, Martin Maldovan, Chaitanya Ullal, and Edwin Thomas. "Sound ideas." Physics World 18, no. 12 (2005): 24.
  3. ^ Laude, Vincent (2015-09-14). Phononic Crystals: Artificial Crystals for Sonic, Acoustic, and Elastic Waves. Walter de Gruyter GmbH & Co KG. ISBN 978-3-11-030266-0.

Read other articles:

Pemilihan Member Single Original JKT48Tanggal14 September - 27 November 2019 (pemungutan suara)30 November 2019 (pengumuman hasil)LokasiBRP SMESCO Convention HallJl. Gatot Subroto No.Kav. 94, RT.11/RW.3, Pancoran, Kota Jakarta Selatan, DKI Jakarta 12780 (pengumuman hasil)Peserta/Pihak terlibat66 anggota JKT48Hasil Anggota Senbatsu untuk single Original JKT48 Rapsodi Shani terpilih menjadi center pada lagu tersebut. Pemilihan Member Single ke-20 JKT48(2018) Pemilihan Member Single Original JKT...

 

Campeonato Sul-Americano de Voleibol Masculino Sub-21 de 1994 Voleibol Informações gerais País-sede Lima Peru Participantes 7 Premiações Campeão Brasil (10º título) Estatísticas ◄◄ Campeonato Sul-Americano de Voleibol Masculino Sub-21 de 1992 Campeonato Sul-Americano de Voleibol Masculino Sub-21 de 1996 ►► O Campeonato Sul-Americano de Voleibol Masculino Sub-21 de 1994 é a décima - segunda edição do Campeonato Sul-Americano de Voleibol Masculino da categoria juvenil,...

 

Equivalência entre as representações simbólicas para separador decimal 1,2 ⇔ 1.2 π = 3,14... ⇔ π = 3.14... Representação com vírgula (usada nos países que adotam a vírgula como separador decimal) equivalente a Representação com ponto (usada nos países que adotam o ponto como separador decimal)  Nota: Para a escolha adequada do delimitador e do separador decimal em artigos da Wikipédia em português, veja Wikipedia:Manual de Estilo.  Nota: Para o comprimento da seq...

Merriman Plaats in de Verenigde Staten Vlag van Verenigde Staten Locatie van Merriman in Nebraska Locatie van Nebraska in de VS Situering County Cherry County Type plaats Village Staat Nebraska Coördinaten 42° 55′ NB, 101° 42′ WL Algemeen Oppervlakte 2,7 km² - land 2,7 km² - water 0,0 km² Inwoners (2006) 114 Hoogte 992 m Overig ZIP-code(s) 69218 FIPS-code 31815 Portaal    Verenigde Staten Merriman is een plaats (village) in de Amerikaanse staat Nebraska, en valt be...

 

Death of five English students on a hiking trip in Germany This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: English calamity – news · newspapers · books · scholar...

 

Linda ArvidsonCirca (1916)LahirLinda Arvidson Johnson(1884-07-12)12 Juli 1884San Francisco, California, U.S.Meninggal26 Juli 1949(1949-07-26) (umur 65)New York City, New York, Amerika SerikatNama lainLinda GriffithPekerjaanAktrisTahun aktif1907–1916Suami/istriD. W. Griffith ​(m. 1906⁠–⁠1936)​ Linda Arvidson adalah istri pertama dari sutradara film D. W. Griffith (14 Mei 1906-2 March 1936). Dia memainkan peran utama dalam banyak...

Fictional character Nellie BertramThe Office characterFirst appearanceSearch Committee (2011)Last appearanceFinale (2013)Created byGreg DanielsPaul LiebersteinPortrayed byCatherine TateIn-universe informationOccupation President of Sabre's Special Projects, Tallahassee, Florida Regional Manager of Dunder Mifflin, Scranton, Pennsylvania Special Projects Manager of Dunder Mifflin, Scranton, Pennsylvania Sales Representative, Dunder Mifflin, Scranton, Pennsylvania Formula One Driver ChildrenDrak...

 

Knights of the SunAlbum mini karya SF9Dirilis12 Oktober 2017 (2017-10-12)GenreK-popBahasaKoreaLabelFNC EntertainmentLOEN EntertainmentKronologi SF9 Breaking Sensation(2017) Knights of the Sun(2017) Mamma Mia!(2018) Singel dalam album Knights of the Sun O Sole MioDirilis: 12 Oktober 2017 Knights of the Sun adalah album mini ketiga dari boy band asal Korea Selatan SF9. Album ini dirilis pada tanggal 12 Oktober 2017, oleh FNC Entertainment. Album ini terdiri dari enam lagu, termasuk sin...

 

Cundinamarca was one of the three departments of Gran Colombia until 1824. Overview In the southwest it bordered the Department of Quito, in the east the Department of Venezuela. From 1824 onward the name was used for the Department of Cundinamarca of the Centro District of Gran Colombia. Status The name is no longer in use due to the implosion of Gran Colombia. See also Cundinamarca Department (1824) Cundinamarca Department (1886–present) References This Colombian location article is a stu...

Voormalig terrein kamp Vledder anno 2010 De Joodse werkkampen in Nederland waren in de beginjaren tijdens de Tweede Wereldoorlog werkkampen verspreid over Nederland van waaruit werkloze Joden buitenarbeid verrichten. Uiteindelijk bleken de kampen doorgangskampen voor deportatie van deze Joden. In de nacht van 2 op 3 oktober 1942, tijdens de laatste dag van Soekot of het Loofhuttenfeest, werden de Joden uit de meeste van deze kampen gehaald. Ze werden met het voorwendsel van gezinshereniging v...

 

У этого термина существуют и другие значения, см. Крестовоздвиженский собор. Православный храмКрестовоздвиженский собор (до 1945 — Кройцкирха)нем. Kreuzkirche Крестовоздвиженский собор 54°42′20″ с. ш. 20°31′22″ в. д.HGЯO Страна  Россия Город Калининград Конфессия Пра...

 

Franconia CollegeTypePrivateActive1963–1978PresidentJohn S. Fallon (1963–1965)Richard R. Ruopp (1965–1968)Lawrence Larry Lemmel (1968–1970)Leon Botstein (1970–1975)Ira Goldenberg (1976–1978)Academic staff40 (in 1968)AddressFranconia CollegeFranconia, NH 03580, Franconia, NH, USACampusRural Franconia College was a small experimental liberal arts college in Franconia, New Hampshire, United States. It opened in 1963 in Dow Academy and the site of the Forest Hills Hotel on Agassiz Roa...

Annual ranking of influential Black British people PowerlistList of the 100 most influential people of African or African Caribbean heritage in the UKPublication detailsPublisherPowerful MediaFirst published2007Latest publicationOctober 27, 2023Powerlist 2024Most InfluentialEdward EnninfulPowerlist website Powerful Media publisher website The Powerlist is a list of the 100 most influential people of African or African Caribbean heritage in the United Kingdom. The list is updated annually and ...

 

Sheets of greaseproof paper Greaseproof paper is paper that is impermeable to oil or grease, and is normally used in cooking or food packaging. It is usually produced by refining the paper stock[further explanation needed] and thus creating a sheet with very low porosity. This is then passed between hard pressure rollers (supercalendered) to further increase the density, creating a paper called glassine. The glassine is treated with starches, alginates or carboxymethyl cellulose (CMC)...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Amélie soundtrack – news · newspapers · books · scholar · JSTOR (June 2009) (Learn how and when to re...

.se

.seDiperkenalkan4 September 1986Jenis TLDTLD kode negara InternetStatusAktifSponsorThe Internet Foundation in SwedenPemakaian yang diinginkanEntitas yang terhubung dengan  SwedenPemakaian aktualSering digunakan di Swedia, juga sebagai domain hackDomain terdaftar1,568,132 (Februari 2021)[1]DokumenTerms and regulations for registrationKebijakan sengketaAlternative dispute resolution (ADR)DNSSECYaSitus web.SE.se adalah top-level domain kode negara Internet untuk Swedia. lbsRanah tin...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2020) القمر المرBitter Moon (بالإنجليزية)Lunes de fiel (بالفرنسية) ملصق الفيلممعلومات عامةالصنف الفني  القائمة ... فيلم رومانسي[1][2] — كوميديا درامية — فيلم دراما[...

 

1990 video gameSpaceward Ho!Developer(s)Delta Tao Software Mobilefreon (Palm) Ariton (iOS)Publisher(s)Delta Tao Software New World Computing (DOS, Win, Amiga) Mobilefreon (Palm) Ariton (iOS)Designer(s)Joe WilliamsPeter CommonsArtist(s)Howard VivesPlatform(s)iOS, Android, Mac OS, Mac OS X (before 10.7), Palm OS, Microsoft Windows (older version), Amiga (older version)Release1990 (Mac)1992 (DOS/Win)1994 (Amiga)Genre(s)4X, Turn-based strategyMode(s)single-player, multiplayer The Spaceward Ho! ic...

The Right ReverendJohn HalesBishop of Coventry and LichfieldArms of Hals of Kenedon in the parish of Sherford, Devon: Argent, a fess between three griffin's heads erased sable[1]Appointed20 September 1459Term endedbetween 15 September and 30 September 1490PredecessorReginald BoulersSuccessorWilliam SmythOrdersConsecration25 November 1459Personal detailsDiedSeptember 1490DenominationCatholic John Hales (c. 1400-1490)[2] (alias Hals, Halse, etc.) was Bishop of Coventry and Lichf...

 

Dieser Artikel beschreibt die Gemeinde. Zum Ortsteil siehe Troskovice. Křenovy Křenovy (Tschechien) Basisdaten Staat: Tschechien Tschechien Region: Plzeňský kraj Bezirk: Domažlice Fläche: 313[1] ha Geographische Lage: 49° 32′ N, 13° 1′ O49.53444444444413.02368Koordinaten: 49° 32′ 4″ N, 13° 1′ 12″ O Höhe: 368 m n.m. Einwohner: 144 (1. Jan. 2023)[2] Postleitzahl: 345 61 Kfz-Kennzeichen: P Ve...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!