1988 British motorcycle Grand Prix
|
Read other articles:
لمعانٍ أخرى، طالع غوودريتش (توضيح). غوودريتش الإحداثيات 30°36′26″N 94°56′49″W / 30.6072°N 94.9469°W / 30.6072; -94.9469 تقسيم إداري البلد الولايات المتحدة[1] التقسيم الأعلى مقاطعة بولك، تكساس خصائص جغرافية المساحة 1.825607 كيلومتر مربع1.8257 كيلومتر مر...
KhovdХовд A cidade de KhovdA cidade de Khovd Localização KhovdLocalização de Khovd na Mongólia Coordenadas 48° 0' 15 N 91° 38' 26 E País Mongólia Província Khovd Distrito Jargalant História Fundação 1731 Características geográficas Área total [1] 70 km² População total (Censo 11/10/2010) [1] 29 012 hab. Densidade 414,5 hab./km² Altitude 1 395 m +976 (0)143 Khovd ou Hovd (em mongol: Ховд), anteriormente conhecida como Ko...
دوار عين سلسي تقسيم إداري البلد المغرب الجهة فاس مكناس الإقليم تاونات الدائرة قرية با محمد الجماعة القروية اغوازي المشيخة سوق الجمعة السكان التعداد السكاني 146 نسمة (إحصاء 2004) • عدد الأسر 25 معلومات أخرى التوقيت ت ع م±00:00 (توقيت قياسي)[1]، وت ع م+01:00 (توقيت صيفي)[...
Untuk kegunaan, lihat Subbenua India. Asia SelatanLuas5.134.641 km2 (1.982.496 sq mi)Penduduk1,814,014,121 (2018) (1st)[1][2]Kepadatn penduduk3.623/km2 (9.380/sq mi)DemonimSouth AsianNegara 7 negara Bangladesh Bhutan India Maladewa Nepal Pakistan Sri Lanka Dependensi Wilayah Samudra Hindia Britania Bahasa Bahasa resmi Bangla Dari Dzongkha Inggris Hindi Divehi Marathi Nepali Pashto Sinhala Tamil Urd...
العلاقات الإماراتية المنغولية الإمارات العربية المتحدة منغوليا الإمارات العربية المتحدة منغوليا تعديل مصدري - تعديل العلاقات الإماراتية المنغولية هي العلاقات الثنائية التي تجمع بين الإمارات العربية المتحدة ومنغوليا.[1][2][3][4][5] مقار...
1989 video game This article is about the original video game. For its 2013 remake, see DuckTales: Remastered. For the 1990 PC game, see DuckTales: The Quest for Gold. For the 2013 mobile game, see DuckTales: Scrooge's Loot. 1989 video gameDuckTalesOriginal North American NES cover artDeveloper(s)CapcomPublisher(s)CapcomProducer(s)Tokuro FujiwaraDavid MullichDarlene WaddingtonDesigner(s)CapcomProgrammer(s)Nobuyuki MatsushimaArtist(s)Keiji InafuneNaoya TomitaHironori MatsumaraMiki KijimaCompos...
مجلس وزراء إسرائيلمعلومات عامةالبلد إسرائيل الاختصاص إسرائيل النص التنظيمي Basic Law: The Government (en) التكوين 14 مايو 1948 المدة 75 سنةً و6 أشهرٍ و23 يومًاتعديل - تعديل مصدري - تعديل ويكي بيانات جزء من سلسلة مقالات سياسة إسرائيلإسرائيل الدستور قوانين أساسية قانون القدس قانون العودة الس...
Bagian dari seriKalvinismeYohanes Kalvin Latar Belakang Kekristenan Reformasi Protestan Protestantisme Teologi Teologi Yohanes Kalvin Teologi Perjanjian Pembaptisan Perjamuan Kudus Asas-Asas Regulatif Predestinasi Skolastisisme Teolog Hulderikus Zwingli Martinus Bucer Petrus Martir Vermigli Henrikus Bullinger Yohanes Kalvin Yohanes Knox Teodorus Beza Zacharias Ursinus Caspar Olevianus Guido de Bres Francis Turretin Jonathan Edwards Friedrich Schleiermacher Charles Hodge Herman Bavinck Karl Ba...
أبو زياد الكويتي معلومات شخصية اسم الولادة خالد بن عبد الرحمن الحسينان الميلاد سنة 1965 الكويت الوفاة 6 ديسمبر 2012 (46–47 سنة) باكستان سبب الوفاة هجوم بمسيرة مواطنة الكويت الحياة العملية المدرسة الأم جامعة الإمام محمد بن سعود الإسلامية اللغة الأم ال...
American record label DreamWorks RecordsParent companyInterscope Geffen A&M(Universal Music Group)Founded1996; 27 years ago (1996)FounderSteven SpielbergJeffrey KatzenbergDavid GeffenDefunctJanuary 9, 2004; 19 years ago (January 9, 2004)Distributor(s)US: Geffen RecordsInternational: BMG Music (before 1999)Polydor (starting in 1999)GenreVariousCountry of originUnited StatesLocationUniversal City, California (1996–1999)Beverly Hills, California (1999–2006)...
Latin phrase For the computer game, see Europa Universalis: Rome. Vae victis! Brennus throws his sword onto the scales. Illustration by Paul Lehugeur, 1886. Vae victis (IPA: [ˈwae̯ ˈwɪktiːs]) is Latin for woe to the vanquished, or woe to the conquered.[1][2][3][4] It means that those defeated in battle are entirely at the mercy of their conquerors and should not expect—or request—leniency.[citation needed] According to tradition, in 390...
Discography San Holo discographyStudio albums3EPs8Singles41Remixes19Production credits5 The discography of Dutch DJ, musician, record producer and composer San Holo consists of three studio albums, eight extended plays, forty-one singles, five production-credited songs, and nineteen remixes. In 2016, Holo's single Light peaked at 13 on the US Dance charts, and is certified Gold in the United States, Holo's first single to do so. He would return to the charts with The Future at 50, Lift Me fro...
Metamorphic rock This article is about the metamorphic rock. For the sedimentary rock, see Argillite. Petrogenetic grid for metapelites (click to zoom).[1][2] Each line represents a metamorphic reaction. Metamorphic facies included are: BS = Blueschist facies, EC = Eclogite facies, PP = Prehnite-Pumpellyite facies, GS = Greenschist facies, EA = Epidote-Amphibolite facies, AM = Amphibolite facies, GRA = Granulite facies, UHT = Ultra-High Temperature facies, HAE = Hornfels-Albit...
State Flag of Connecticut State of ConnecticutUseCivil and state flag Proportion3:4DesignA white shield with three grapevines on a field of azure blue. The flag of the state of Connecticut is a white baroque shield with three grapevines, each bearing three bunches of purple grapes on a field of royal blue. The banner below the shield reads Qui Transtulit Sustinet, Latin for He who transplanted sustains, Connecticut's state motto. The flag dimensions are 5.5 feet (1.7 m) in length and 4.3...
District in Bagmati Pradesh, Nepal District in Bagmati Province, NepalNuwakot District नुवाकोट जिल्लाDistrictValley in NuwakotLocation of district in provinceCountry NepalProvinceBagmati ProvinceAdmin HQ.Nuwakot (Bidur Municipality)Government • TypeCoordination committee • BodyDCC, NuwakotArea • Total1,121 km2 (433 sq mi)Population (2011) • Total277,471 • Density250/km2 (...
National Park in Shiretoko, Japan This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Shiretoko National Park – news · newspapers · books · scholar · JSTOR (September 2020) (Learn how and when to remove this template message) Shiretoko National Park知床国立公園IUCN category II (national park)View from the ...
Disambiguazione – Se stai cercando il console romano nel 287 a.C., vedi Gaio Nauzio Rutilo (console 287 a.C.). Gaio Nautio RutiloConsole della Repubblica romanaGensNautii Consolato475 a.C., 458 a.C. Gaio Nautio Rutilo (... – ...; fl. V secolo a.C.) è stato un politico romano, console della Repubblica romana. Indice 1 Biografia 1.1 Primo consolato 1.2 Secondo consolato 2 Note 3 Voci correlate Biografia Primo consolato Il suo primo consolato, nel 475 a.C. lo vide collega di Publio Valerio ...
Canadian novelist of Vietnamese heritage A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (February 2017) (Learn how and when to remove this template message) Caroline VuBorn1959 Alma materConcordia University OccupationWriter Caroline Vu is a Canadian novelist of Vietnamese heritage.[1...
Artikel ini memiliki beberapa masalah. Tolong bantu memperbaikinya atau diskusikan masalah-masalah ini di halaman pembicaraannya. (Pelajari bagaimana dan kapan saat yang tepat untuk menghapus templat pesan ini) Biografi ini tidak memiliki sumber tepercaya sehingga isinya tidak dapat dipastikan. Bantu memperbaiki artikel ini dengan menambahkan sumber tepercaya. Materi kontroversial atau trivial yang sumbernya tidak memadai atau tidak bisa dipercaya harus segera dihapus.Cari sumber: I Made...
「无限」重定向至此。关于其他用法,请见「无限 (消歧义)」。 各种各样的数 基本 N ⊆ Z ⊆ Q ⊆ R ⊆ C {\displaystyle \mathbb {N} \subseteq \mathbb {Z} \subseteq \mathbb {Q} \subseteq \mathbb {R} \subseteq \mathbb {C} } 正數 R + {\displaystyle \mathbb {R} ^{+}} 自然数 N {\displaystyle \mathbb {N} } 正整數 Z + {\displaystyle \mathbb {Z} ^{+}} 小数 有限小数 无限小数 循环小数 有理数 Q {\displaystyle...