William Bernard Raymond Lickorish (* 19. Februar1938), meist zitiert als W. B. R. Lickorish oder W. B. Raymond Lickorish, ist ein britischer Mathematiker, der sich mit geometrischer Topologie, speziell Knotentheorie und 3-Mannigfaltigkeiten, beschäftigt.
Lickorish wurde 1964 bei Erik Christopher Zeeman in Cambridge promoviert.[1] Später war er Professor in Cambridge, Fellow des Pembroke College und zeitweise Leiter des Department of Pure Mathematics and Mathematical Statistics. Inzwischen ist er emeritiert.
Lickorish ist einer der Entdecker des HOMFLY-Polynoms, einer polynomialen Invariante der Knotentheorie, benannt nach den Anfangsbuchstaben der Entdecker.[2] Es umfasst das Jones- und das Alexander-Polynom.
In den 1960er Jahren bewies er das Lickorish-Wallace Theorem (unabhängig von Andrew H. Wallace), das besagt, dass jede geschlossene, orientierbare zusammenhängende 3-Mannigfaltigkeit durch Dehn-Chirurgie (Dehn-Surgery, nach Max Dehn, eine Standard-Zerlegungstechnik in der geometrischen Topologie) aus in eine 3-Sphäre eingebetteten Verschlingungen (technisch genauer Framed Links) gewonnen werden kann.[3] Für den nicht-orientierbaren Fall bewies er einen ähnlichen Satz für Dehn-Chirurgie aus nicht orientierbaren 2-Sphären-Bündeln über dem Kreis.
↑W. B. R. Lickorish: A representation of orientable combinatorial 3-manifolds, Annals of Mathematics, Series 2, Bd. 76, 1962, S. 531–540, Homeomorphisms of non-orientable two-manifolds, Proceedings Cambridge Philosophical Society 59, 1963, S. 307–317