Symmetrische Matrix

Symmetriemuster einer symmetrischen (5×5)-Matrix

Eine symmetrische Matrix ist in der Mathematik eine quadratische Matrix, deren Einträge spiegelsymmetrisch bezüglich der Hauptdiagonale sind. Eine symmetrische Matrix stimmt demnach mit ihrer transponierten Matrix überein.

Die Summe zweier symmetrischer Matrizen und jedes skalare Vielfache einer symmetrischen Matrix ist wieder symmetrisch. Die Menge der symmetrischen Matrizen fester Größe bildet daher einen Untervektorraum des zugehörigen Matrizenraums. Jede quadratische Matrix lässt sich dabei eindeutig als Summe einer symmetrischen und einer schiefsymmetrischen Matrix schreiben. Das Produkt zweier symmetrischer Matrizen ist genau dann symmetrisch, wenn die beiden Matrizen kommutieren. Das Produkt einer beliebigen Matrix mit ihrer Transponierten ergibt eine symmetrische Matrix.

Symmetrische Matrizen mit reellen Einträgen weisen eine Reihe weiterer besonderer Eigenschaften auf. So ist eine reelle symmetrische Matrix stets selbstadjungiert, sie besitzt nur reelle Eigenwerte und sie ist stets orthogonal diagonalisierbar. Für komplexe symmetrische Matrizen gelten diese Eigenschaften im Allgemeinen nicht; das entsprechende Gegenstück sind dort hermitesche Matrizen. Eine wichtige Klasse reeller symmetrischer Matrizen sind positiv definite Matrizen, bei denen alle Eigenwerte positiv sind.

In der linearen Algebra werden symmetrische Matrizen zur Beschreibung symmetrischer Bilinearformen verwendet. Die Darstellungsmatrix einer selbstadjungierten Abbildung bezüglich einer Orthonormalbasis ist ebenfalls stets symmetrisch. Lineare Gleichungssysteme mit symmetrischer Koeffizientenmatrix lassen sich effizient und numerisch stabil lösen. Weiterhin werden symmetrische Matrizen bei Orthogonalprojektionen und bei der Polarzerlegung von Matrizen verwendet.

Symmetrische Matrizen besitzen Anwendungen unter anderem in der Geometrie, der Analysis, der Graphentheorie und der Stochastik.

Eng verwandt mit den Matrizen sind die Tensoren zweiter Stufe, die ein wichtiges mathematisches Hilfsmittel in den Natur- und Ingenieurwissenschaften, insbesondere in der Kontinuumsmechanik sind, siehe #Symmetrische Tensoren.

Definition

Eine quadratische Matrix über einem Körper heißt symmetrisch, wenn für ihre Einträge

für gilt. Eine symmetrische Matrix ist demnach spiegelsymmetrisch bezüglich ihrer Hauptdiagonale, das heißt, es gilt

,

wobei die transponierte Matrix bezeichnet.

Beispiele

Beispiele für symmetrische Matrizen mit reellen Einträgen sind

.

Allgemein haben symmetrische Matrizen der Größe , und die Struktur

.

Klassen symmetrischer Matrizen beliebiger Größe sind unter anderem

Eigenschaften

Einträge

Bei einer symmetrischen Matrix müssen nur die Einträge auf und unterhalb der Diagonalen gespeichert werden

Aufgrund der Symmetrie wird eine symmetrische Matrix bereits durch ihre Diagonaleinträge und die Einträge unterhalb (oder oberhalb) der Diagonalen eindeutig charakterisiert. Eine symmetrische Matrix weist demnach höchstens

verschiedene Einträge auf. Im Vergleich dazu kann eine nichtsymmetrische -Matrix bis zu unterschiedliche Einträge besitzen, also bei großen Matrizen fast doppelt so viele. Zur Speicherung symmetrischer Matrizen im Computer gibt es daher spezielle Speicherformate, die diese Symmetrie ausnutzen.[1]

Summe

Die Summe zweier symmetrischer Matrizen ist stets wieder symmetrisch, denn

.

Ebenso ist auch das Produkt einer symmetrischen Matrix mit einem Skalar wieder symmetrisch. Nachdem auch die Nullmatrix symmetrisch ist, bildet die Menge der symmetrischen -Matrizen einen Untervektorraum

des Matrizenraums . Dieser Untervektorraum besitzt die Dimension , wobei die Standardmatrizen , , und , darin eine Basis bilden.

Zerlegung

Falls die Charakteristik des Körpers ungleich 2 ist, lässt sich jede beliebige quadratische Matrix eindeutig als Summe einer symmetrischen Matrix und einer schiefsymmetrischen Matrix schreiben, indem

  und  

gewählt werden. Die schiefsymmetrischen Matrizen bilden dann ebenfalls einen Untervektorraum des Matrizenraums mit Dimension . Der gesamte -dimensionale Raum lässt sich folglich als direkte Summe

der Räume der symmetrischen und der schiefsymmetrischen Matrizen schreiben.

Produkt

Das Produkt zweier symmetrischer Matrizen ist im Allgemeinen nicht wieder symmetrisch. Das Produkt symmetrischer Matrizen ist genau dann symmetrisch, wenn und kommutieren, also wenn gilt, denn dann ergibt sich

.

Insbesondere sind damit für eine symmetrische Matrix auch alle ihre Potenzen mit und daher auch ihr Matrixexponential wieder symmetrisch. Für eine beliebige Matrix sind sowohl die -Matrix als auch die -Matrix stets symmetrisch.

Kongruenz

Jede Matrix , die kongruent zu einer symmetrischen Matrix ist, ist ebenfalls symmetrisch, denn es gilt

,

wobei die zugehörige Transformationsmatrix ist. Matrizen, die ähnlich zu einer symmetrischen Matrix sind, müssen jedoch nicht notwendigerweise ebenfalls symmetrisch sein.

Inverse

Ist eine symmetrische Matrix invertierbar, dann ist auch ihre Inverse wieder symmetrisch, denn es gilt

.

Für eine reguläre symmetrische Matrix sind demnach auch alle Potenzen mit wieder symmetrisch.

Reelle symmetrische Matrizen

Symmetrische Matrizen mit reellen Einträgen besitzen eine Reihe weiterer besonderer Eigenschaften.

Normalität

Eine reelle symmetrische Matrix ist stets normal, denn es gilt

.

Jede reelle symmetrische Matrix kommutiert also mit ihrer Transponierten. Es gibt allerdings auch normale Matrizen, die nicht symmetrisch sind, beispielsweise schiefsymmetrische Matrizen.

Selbstadjungiertheit

Eine reelle symmetrische Matrix ist stets selbstadjungiert, denn es gilt mit dem reellen Standardskalarprodukt

für alle Vektoren . Es gilt auch die Umkehrung und jede reelle selbstadjungierte Matrix ist symmetrisch. Aufgefasst als komplexe Matrix ist eine reelle symmetrische Matrix stets hermitesch, denn es gilt

,

wobei die adjungierte Matrix zu und die konjugierte Matrix zu ist. Damit sind reelle symmetrische Matrizen auch selbstadjungiert bezüglich des komplexen Standardskalarprodukts.

Eigenwerte

Durch eine reelle symmetrische (2×2)-Matrix wird der Einheitskreis (blau) in eine Ellipse (grün) transformiert. Die Halbachsen der Ellipse (rot) entsprechen den Beträgen der Eigenwerte der Matrix.

Die Eigenwerte einer reellen symmetrischen Matrix , das heißt die Lösungen der Eigenwertgleichung , sind stets reell. Ist nämlich ein komplexer Eigenwert von mit zugehörigem Eigenvektor , , dann gilt mit der komplexen Selbstadjungiertheit von

.

Nachdem für ist, muss gelten und der Eigenwert damit reell sein. Daraus folgt dann auch, dass der zugehörige Eigenvektor reell gewählt werden kann.

Vielfachheiten

Bei jeder reellen symmetrischen Matrix stimmen die algebraischen und die geometrischen Vielfachheiten aller Eigenwerte überein. Ist nämlich ein Eigenwert von mit geometrischer Vielfachheit , dann existiert eine Orthonormalbasis des Eigenraums von , welche durch zu einer Orthonormalbasis des Gesamtraums ergänzt werden kann. Mit der orthogonalen Basistransformationsmatrix ergibt sich damit die transformierte Matrix

als Blockdiagonalmatrix mit den Blöcken und . Für die Einträge von mit gilt nämlich mit der Selbstadjungiertheit von und der Orthonormalität der Basisvektoren

,

wobei das Kronecker-Delta darstellt. Da nach Voraussetzung keine Eigenvektoren zum Eigenwert von sind, kann kein Eigenwert von sein. Die Matrix besitzt daher nach der Determinantenformel für Blockmatrizen den Eigenwert genau mit algebraischer Vielfachheit und aufgrund der Ähnlichkeit der beiden Matrizen damit auch .[2]

Diagonalisierbarkeit

Da bei einer reellen symmetrischen Matrix algebraische und geometrische Vielfachheiten aller Eigenwerte übereinstimmen und da Eigenvektoren zu verschiedenen Eigenwerten stets linear unabhängig sind, kann aus Eigenvektoren von eine Basis des gebildet werden. Daher ist eine reelle symmetrische Matrix stets diagonalisierbar, das heißt, es gibt eine reguläre Matrix und eine Diagonalmatrix , sodass

gilt. Die Matrix hat dabei die Eigenvektoren als Spalten und die Matrix hat die zu diesen Eigenvektoren jeweils zugehörigen Eigenwerte auf der Diagonalen. Durch eine Permutation der Eigenvektoren kann dabei die Reihenfolge der Diagonaleinträge von beliebig gewählt werden. Daher sind zwei reelle symmetrische Matrizen genau dann zueinander ähnlich, wenn sie die gleichen Eigenwerte besitzen. Weiterhin sind zwei reelle symmetrische Matrizen genau dann simultan diagonalisierbar, wenn sie kommutieren.

Orthogonale Diagonalisierbarkeit

Bei einer symmetrischen Matrix stehen die Eigenvektoren (blau und violett) zu verschiedenen Eigenwerten (hier 3 und 1) senkrecht aufeinander. Durch Anwendung der Matrix werden blaue Vektoren um den Faktor drei gestreckt, während violette Vektoren ihre Länge beibehalten.

Die Eigenvektoren zu zwei verschiedenen Eigenwerten einer reellen symmetrischen Matrix sind stets orthogonal. Es gilt nämlich wiederum mit der Selbstadjungiertheit von

.

Da und als verschieden angenommen wurden, folgt daraus dann . Daher kann aus Eigenvektoren von eine Orthonormalbasis des gebildet werden. Damit ist eine reelle symmetrische Matrix sogar orthogonal diagonalisierbar, das heißt, es gibt eine orthogonale Matrix , mit der

gilt. Diese Darstellung bildet die Grundlage für die Hauptachsentransformation und ist die einfachste Version des Spektralsatzes.

Kenngrößen

Aufgrund der Diagonalisierbarkeit einer reellen symmetrischen Matrix gilt für ihre Spur

und für ihre Determinante entsprechend

.

Der Rang einer reellen symmetrischen Matrix ist gleich der Anzahl der Eigenwerte ungleich Null, also mit dem Kronecker-Delta

.

Eine reelle symmetrische Matrix ist genau dann invertierbar wenn keiner ihrer Eigenwerte Null ist. Die Spektralnorm einer reellen symmetrischen Matrix ist

und damit gleich dem Spektralradius der Matrix. Die Frobeniusnorm ergibt sich aufgrund der Normalität entsprechend zu

.

Definitheit

Ist eine reelle symmetrische Matrix, dann wird der Ausdruck

mit quadratische Form von genannt. Je nachdem ob größer als, größer gleich, kleiner als oder kleiner gleich null für alle ist, heißt die Matrix positiv definit, positiv semidefinit, negativ definit oder negativ semidefinit. Kann sowohl positive, als auch negative Vorzeichen annehmen, so heißt indefinit. Die Definitheit einer reellen symmetrischen Matrix kann anhand der Vorzeichen ihrer Eigenwerte ermittelt werden. Sind alle Eigenwerte positiv, ist die Matrix positiv definit, sind sie alle negativ, ist die Matrix negativ definit und so weiter. Das Tripel bestehend aus den Anzahlen der positiven, negativen und Null-Eigenwerte einer reellen symmetrischen Matrix wird Signatur der Matrix genannt. Nach dem Trägheitssatz von Sylvester bleibt die Signatur einer reellen symmetrischen Matrix unter Kongruenztransformationen erhalten.

Abschätzungen

Nach dem Satz von Courant-Fischer liefert der Rayleigh-Quotient Abschätzungen für den kleinsten und den größten Eigenwert einer reellen symmetrischen Matrix der Form

für alle mit . Gleichheit gilt dabei jeweils genau dann, wenn ein Eigenvektor zum jeweiligen Eigenwert ist. Der kleinste und der größte Eigenwert einer reellen symmetrischen Matrix kann demnach durch Minimierung beziehungsweise Maximierung des Rayleigh-Quotienten ermittelt werden. Eine weitere Möglichkeit zur Eigenwertabschätzung bieten die Gerschgorin-Kreise, die für reelle symmetrische Matrizen die Form von Intervallen haben.

Sind zwei reelle symmetrische Matrizen mit absteigend sortierten Eigenwerten und , dann gibt die Fan-Ungleichung die Abschätzung

.

Gleichheit ist hierbei genau dann erfüllt, wenn die Matrizen und simultan geordnet diagonalisierbar sind, das heißt, wenn eine orthogonale Matrix existiert, sodass und gelten. Die Fan-Ungleichung stellt eine Verschärfung der Cauchy-Schwarz-Ungleichung für das Frobenius-Skalarprodukt und eine Verallgemeinerung der Umordnungs-Ungleichung für Vektoren dar.[3]

Komplexe symmetrische Matrizen

Zerlegung

Die Zerlegung des komplexen Matrizenraums als direkte Summe der Räume symmetrischer und schiefsymmetrischer Matrizen

stellt eine orthogonale Summe bezüglich des Frobenius-Skalarprodukts dar. Es gilt nämlich

für alle Matrizen und , woraus folgt. Die Orthogonalität der Zerlegung gilt entsprechend auch für den reellen Matrizenraum .

Spektrum

Bei komplexen Matrizen hat die Symmetrie keine besonderen Auswirkungen auf das Spektrum. Eine komplexe symmetrische Matrix kann auch nicht-reelle Eigenwerte besitzen. Beispielsweise hat die komplexe symmetrische Matrix

die beiden Eigenwerte . Es gibt auch komplexe symmetrische Matrizen, die nicht diagonalisierbar sind. Zum Beispiel besitzt die Matrix

den einzigen Eigenwert mit algebraischer Vielfachheit zwei und geometrischer Vielfachheit eins. Allgemein ist sogar jede komplexe quadratische Matrix ähnlich zu einer komplexen symmetrischen Matrix. Daher weist das Spektrum einer komplexen symmetrischen Matrix keinerlei Besonderheiten auf.[4] Das komplexe Gegenstück reeller symmetrischer Matrizen sind, was die mathematischen Eigenschaften betrifft, hermitesche Matrizen.

Faktorisierung

Jede komplexe symmetrische Matrix lässt sich durch die Autonne-Takagi-Faktorisierung

in eine unitäre Matrix , eine reelle Diagonalmatrix und die Transponierte von zerlegen. Die Einträge der Diagonalmatrix sind dabei die Singulärwerte von , also die Quadratwurzeln der Eigenwerte von .[5]

Verwendung

Symmetrische Bilinearformen

Ist ein -dimensionaler Vektorraum über dem Körper , dann lässt sich jede Bilinearform nach Wahl einer Basis für durch die Darstellungsmatrix

beschreiben. Ist die Bilinearform symmetrisch, gilt also für alle , dann ist auch die Darstellungsmatrix symmetrisch. Umgekehrt definiert jede symmetrische Matrix mittels

eine symmetrische Bilinearform . Ist eine reelle symmetrische Matrix zudem positiv definit, dann stellt ein Skalarprodukt im euklidischen Raum dar.

Selbstadjungierte Abbildungen

Ist ein -dimensionaler reeller Skalarproduktraum, dann lässt sich jede lineare Abbildung nach Wahl einer Orthonormalbasis für durch die Abbildungsmatrix

darstellen, wobei für ist. Die Abbildungsmatrix ist nun genau dann symmetrisch, wenn die Abbildung selbstadjungiert ist. Dies folgt aus

,

wobei und sind.

Projektionen und Spiegelungen

Orthogonale Zerlegungen werden durch symmetrische Matrizen beschrieben

Ist wieder ein -dimensionaler reeller Skalarproduktraum und ist ein -dimensionaler Untervektorraum von , wobei die Koordinatenvektoren einer Orthonormalbasis für sind, dann ist die Orthogonalprojektionsmatrix auf diesen Untervektorraum

als Summe symmetrischer Rang-Eins-Matrizen ebenfalls symmetrisch. Auch die Orthogonalprojektionsmatrix auf den Komplementärraum ist aufgrund der Darstellung stets symmetrisch. Mit Hilfe der Projektionsmatrizen und lässt sich jeder Vektor in zueinander orthogonale Vektoren und zerlegen. Auch die Spiegelungsmatrix an einem Untervektorraum ist stets symmetrisch.

Lineare Gleichungssysteme

Das Auffinden der Lösung eines linearen Gleichungssystems mit symmetrischer Koeffizientenmatrix vereinfacht sich, wenn man die Symmetrie der Koeffizientenmatrix ausnutzt. Auf Grund der Symmetrie lässt sich die Koeffizientenmatrix als Produkt

mit einer unteren Dreiecksmatrix mit lauter Einsen auf der Diagonale und einer Diagonalmatrix schreiben. Diese Zerlegung wird beispielsweise bei der Cholesky-Zerlegung positiv definiter symmetrischer Matrizen verwendet, um die Lösung des Gleichungssystems zu berechnen. Beispiele moderner Verfahren zur numerischen Lösung großer linearer Gleichungssysteme mit dünnbesetzter symmetrischer Koeffizientenmatrix sind das CG-Verfahren und das MINRES-Verfahren.

Polarzerlegung

Jede quadratische Matrix kann mittels der Polarzerlegung auch als Produkt

einer orthogonalen Matrix und einer positiv semidefiniten symmetrischen Matrix faktorisiert werden. Die Matrix ergibt sich dabei als die Quadratwurzel von . Ist regulär, so ist positiv definit und die Polarzerlegung eindeutig mit .

Anwendungen

Geometrie

Quadriken können durch symmetrische Matrizen beschrieben werden

Eine Quadrik im -dimensionalen euklidischen Raum ist die Nullstellenmenge eines quadratischen Polynoms in Variablen. Jede Quadrik kann somit als Punktmenge der Form

beschrieben werden, wobei mit eine symmetrische Matrix, und sind.

Analysis

Die Charakterisierung der kritischen Punkte einer zweimal stetig differenzierbaren Funktion kann mit Hilfe der Hesse-Matrix

vorgenommen werden. Nach dem Satz von Schwarz ist die Hesse-Matrix stets symmetrisch. Je nachdem ob positiv definit, negativ definit oder indefinit ist, liegt an der kritischen Stelle ein lokales Minimum, ein lokales Maximum oder ein Sattelpunkt vor.

Graphentheorie

Ein ungerichteter kanten­gewichteter Graph besitzt stets eine symmetrische Adjazenzmatrix

Die Adjazenzmatrix eines ungerichteten kantengewichteten Graphen mit der Knotenmenge ist durch

  mit  

gegeben und damit ebenfalls stets symmetrisch. Auch von der Adjazenzmatrix durch Summation oder Potenzierung abgeleitete Matrizen, wie die Laplace-Matrix, die Erreichbarkeitsmatrix oder die Entfernungsmatrix, sind dann symmetrisch. Die Analyse solcher Matrizen ist Gegenstand der spektralen Graphentheorie.

Stochastik

Ist ein Zufallsvektor bestehend aus reellen Zufallsvariablen mit endlicher Varianz, dann ist die zugehörige Kovarianzmatrix

die Matrix aller paarweisen Kovarianzen dieser Zufallsvariablen. Nachdem für gilt, ist eine Kovarianzmatrix stets symmetrisch.

Symmetrische Tensoren

Tensoren sind ein wichtiges mathematisches Hilfsmittel in den Natur- und Ingenieurwissenschaften, insbesondere in der Kontinuumsmechanik, da sie neben dem Zahlenwert und der Einheit auch noch Informationen über Orientierungen im Raum enthalten[Anm. 1]. Die Komponenten des Tensors verweisen auf Tupel von Basisvektoren, die durch das dyadische Produkt „⊗“ verknüpft sind. Alles, was oben über reelle symmetrische Matrizen als Ganzem geschrieben steht, lässt sich auf symmetrische Tensoren zweiter Stufe übertragen. Insbesondere haben auch sie reelle Eigenwerte und paarweise orthogonale oder orthogonalisierbare Eigenvektoren. Für symmetrische positiv definite Tensoren zweiter Stufe wird auch ein Funktionswert analog zur Quadratwurzel einer Matrix oder zum Matrixexponential definiert, siehe auch Formelsammlung Tensoralgebra#Symmetrische und positiv definite Tensoren.

Koeffizientenmatrix von symmetrischen Tensoren 2. Stufe

Nicht ohne Weiteres lassen sich die Aussagen über die Einträge in den Matrizen auf Tensoren übertragen, denn bei letzteren hängen sie vom verwendeten Basissystem ab. Nur bezüglich der Standardbasis – oder allgemeiner einer Orthonormalbasis – können Tensoren zweiter Stufe mit einer Matrix identifiziert werden. Der Anschaulichkeit halber beschränkt sich die allgemeine Darstellung hier auf den reellen drei-dimensionalen Vektorraum, nicht zuletzt auch wegen seiner besonderen Relevanz in den Natur- und Ingenieurwissenschaften.

Jeder Tensor zweiter Stufe kann bezüglich zweier Vektorraumbasen und als Summe

geschrieben werden. Bei der Transposition werden im dyadischen Produkt die Vektoren vertauscht. Der transponierte Tensor ist somit

Eine mögliche Symmetrie ist hier nicht einfach erkennbar; jedenfalls genügt die Bedingung nicht für den Nachweis. Die Bedingung gilt jedoch bezüglich einer Orthonormalbasis ê1,2,3

Hier kann die Symmetrie aus seiner Koeffizientenmatrix abgelesen werden:

Dies gilt auch bezüglich einer allgemeinen, nicht orthonormalen, kontravarianten[Anm. 2] Basis ĝ1,2,3:[Anm. 3]

Sollen beide Tensoren gleich sein, dann folgt auch hier die Symmetrie der Koeffizientenmatrix . In obiger Form wird der Tensor kovariant genannt. Beim kontravarianten Tensor wird die Duale Basis benutzt, sodass . Für ihn folgt die Symmetrie der Koeffizientenmatrix wie beim kovarianten Tensor. Beim gemischtvarianten Tensor werden beide Basen benutzt

Sind beide Tensoren identisch, ist , weswegen die Indizes bei symmetrischen Tensoren übereinander gestellt werden können: . Dann hat man

Die gemischtvariante Koeffizientenmatrix ist beim gemischtvarianten Tensor im Allgemeinen nicht symmetrisch. Besagtes gilt entsprechend auch für symmetrische gemischtvariante Tensoren der Form .

Invarianz der Symmetrieeigenschaft

Die Symmetrie eines Tensors ist von Basiswechseln unberührt. Das ist daran ersichtlich, dass die Vektorinvariante, die ausschließlich vom schiefsymmetrischen Anteil bestimmt wird und nur bei symmetrischen Tensoren der Nullvektor ist, invariant gegenüber Basiswechseln ist.

Betrag eines Tensors

Der Betrag eines Tensors, definiert mit der Frobeniusnorm

,

lässt sich bei symmetrischen Tensoren mit den Hauptinvarianten darstellen:

Symmetrie von Tensoren höherer Stufe

Auch bei Tensoren höherer Stufe werden bei der Transposition die Basisvektoren in den Dyadischen Produkten vertauscht. Allerdings gibt es dort mehrere Möglichkeiten die Basisvektoren zu permutieren und entsprechend gibt es vielfältige Symmetrien bei Tensoren höherer Stufe. Bei einem Tensor vierter Stufe wird durch die Notation der i-te Vektor mit dem k-ten Vektor vertauscht, beispielsweise

Bei der Transposition „“ ohne Angabe der Positionen werden die ersten beiden durch die letzten beiden Vektoren vertauscht[Anm. 4]:

Symmetrien liegen dann vor, wenn der Tensor mit seiner irgendwie transponierten Form übereinstimmt.

Einzelnachweise bezüglich Tensoren

  1. H. Altenbach: Kontinuumsmechanik. Springer, 2012, ISBN 978-3-642-24118-5, S. 22.
  2. Für die Begriffe kovariant und kontravariant siehe Konvektive Koordinaten oder Krummlinige Koordinaten.
  3. Wolfgang Werner: Vektoren und Tensoren als universelle Sprache in Physik und Technik. Tensoralgebra und Tensoranalysis. Band 1. Springer Vieweg Verlag, Wiesbaden 2019, ISBN 978-3-658-25271-7, S. 203, doi:10.1007/978-3-658-25272-4.
  4. W. Ehlers: Ergänzung zu den Vorlesungen, Technische Mechanik und Höhere Mechanik. 2014, S. 25 (uni-stuttgart.de [PDF; abgerufen am 17. Januar 2018]).

Siehe auch

Einzelnachweise

  1. Christoph W. Überhuber: Computer-Numerik. Band 2. Springer, 1995, S. 401 f.
  2. Howard Anton, Chris Rorres: Elementary Linear Algebra: Applications Version. John Wiley & Sons, 2010, S. 404–405.
  3. Jonathan M. Borwein, Adrian S. Lewis: Convex Analysis and Nonlinear Optimization: Theory and Examples. Springer, 2010, ISBN 978-0-387-31256-9, S. 10.
  4. Roger A. Horn, Charles R. Johnson: Matrix Analysis. Cambridge University Press, 2012, S. 271.
  5. Roger A. Horn, Charles R. Johnson: Matrix Analysis. Cambridge University Press, 2012, S. 153.

Literatur

  • Gerd Fischer: Lineare Algebra. (Eine Einführung für Studienanfänger). 13., durchgesehene Auflage. Vieweg, Braunschweig u. a. 2002, ISBN 3-528-97217-3.
  • Roger A. Horn, Charles R. Johnson: Matrix Analysis. Cambridge University Press, 2012, ISBN 0-521-46713-6.
  • Hans-Rudolf Schwarz, Norbert Köckler: Numerische Mathematik. 5., überarbeitete Auflage. Teubner, Stuttgart u. a. 2004, ISBN 3-519-42960-8.

Read other articles:

Questa voce sull'argomento petrolio è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Riserve di petrolio nel 2013 L'industria petrolifera è il settore dell'industria che si occupa del petrolio includendo tutti i vari processi interessati: estrazione del petrolio dai giacimenti trasporto con oledotti e petroliere trasformazione che avviene nelle raffinerie nell'industria petrolchimica commercializzazione dei prodotti derivati Voci correlate Giacimen...

 

Селище Любешів В'їзна арка садиби (18 ст.) – вигляд із вулиці БондаренкаВ'їзна арка садиби (18 ст.) – вигляд із вулиці Бондаренка Країна  Україна Область Волинська область Район Камінь-Каширський район Громада Любешівська селищна громада Код КАТОТТГ: Основні дані Заснован

 

Minister of Territorial CohesionMinistre de la Cohésion territorialeIncumbentJoël Giraudsince 5 March 2022Ministry of Territorial CohesionMember ofCabinetReports toPresident of the RepublicPrime MinisterSeatHôtel de Castries 72, Rue de Varenne, Paris 7e, FranceNominatorPrime MinisterAppointerPresident of the RepublicTerm lengthNo fixed termFormation6 July 1972 (as Minister of Equipment, Housing and Spatial Planning)WebsiteOfficial website Politics of France Constitutions Fifth Republi...

中国人民解放军途径台海示意图 2020年中国人民解放军西南空域演练,是指2020年中国人民解放军东部战区在中華民國防空識別區西南空域等领域进行的一系列军事演练活动。针对解放军的行动,美军也在台湾周邊地区主动进行了一系列军事行动作为回应。 解放军行动 1月 1月23日,中国人民解放军空军空警-500、轰-6等飞机进入到中華民國防空識別區[1]。 2月 2月9日,中国...

 

Paus Pius V (1504–72). Paus Pius V (menjabat 1566–1572) mengangkat 21 kardinal dalam tiga konsistori. 6 Maret 1566 Michele Bonelli 24 Maret 1568 Diego de Espinosa Jérôme Souchier Gianpaolo Della Chiesa Antonio Carafa 17 Mei 1570 Paolo Burali d'Arezzo (1511–78) Marcantonio Maffei Gaspar Cervantes de Gaeta Giulio Antonio Santorio Pier Donato Cesi Carlo Grassi Charles d'Angennes de Rambouillet Felice Peretti di Montalto Giovanni Aldobrandini Girolamo Rusticucci Giulio Acquaviva d'Aragona...

 

Untuk majalah Jepang, lihat Weekly Shōnen Jump. Untuk terbitan Viz sebelumnya, lihat Shonen Jump (majalah). Weekly Shonen JumpEdisi pertama Weekly Shonen Jump's, yang diterbitkan pada tanggal 21 Januari 2013, menampilkan Naruto UzumakiEditor kepalaAndy Nakatani[1]EditorJohn Bae[2]EditorAlexis Kirsch[2]EditorMarlene First[2]Kategorimanga, shōnenFrekuensiMingguanTerbitan pertama30 Januari 2012; 11 tahun lalu (2012-01-30) (sebagai Weekly Shonen Jump Alpha)T...

Kepolisian Resor TulungagungLambang Polda Jatim IndonesiaSingkatanPolres TulungagungMottoSELARASStruktur yurisdiksiWilayah hukumJawa TimurPeta wilayah Yurisdiksi Polres TulungagungYurisdiksi hukumTulungagungKategoriPolisi sipilStruktur operasionalPengawasKepolisian Daerah Jawa TimurMarkas besarJl. Ahmad Yani Timur No.9, Bago, Kec. Tulungagung, Kabupaten TulungagungPejabat eksekutifAKBP Teuku Arsya Khadafi, S.H., S.I.K., M.Si., KapolresKompol Christian Bagus Yulianto, S.H., S.I.K., M.Si.,...

 

National highway in India National Highway 930Map of the National Highway in redRoute informationAuxiliary route of NH 30Length396 km (246 mi)Major junctionsWest endPururMajor intersections NH 930D - Chandrapur NH 347A - Warora East endKaranji LocationCountryIndiaStatesChhattisgarh, Maharashtra Highway system Roads in India Expressways National State Asian ← NH 30→ NH 44 National Highway 930, commonly referred to as NH 930 is a national highway in India.[1]...

 

Chemical compound This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Piperocaine – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this template message) PiperocaineClinical dataATC codenoneIdentifiers IUPAC name 3-(2-Methylpiperidin-1-yl)propyl benzoate CAS Number136-82...

川満 寛弥 ロッテ時代基本情報国籍 日本出身地 沖縄県宮古島市生年月日 (1991-03-04) 1991年3月4日(32歳)身長体重 185 cm85 kg選手情報投球・打席 左投左打ポジション 投手プロ入り 2012年 ドラフト2位経歴(括弧内はプロチーム在籍年度) 沖縄県立宮古総合実業高等学校 九州共立大学 千葉ロッテマリーンズ (2013 - 2016) 沖縄電力 この表について この表はテンプレートを用いて...

 

Japanese cyclist Makoto IijimaPersonal informationFull nameMakoto IijimaJapanese: 飯島 誠Born (1971-02-12) 12 February 1971 (age 52)Hino, Tokyo, JapanHeight1.69 m (5 ft 6+1⁄2 in)Weight63 kg (139 lb)Team informationCurrent teamRetiredDisciplineRoadTrackRoleRiderProfessional teams2005Sumita Ravanello Pearl Izumi2008–2010Bridgestone–Anchor2013Gruppo–Acqua–Tama Major winsJapanese National Time Trial Championships (1998, 2004, 2005) Medal re...

 

This article contains the Meitei alphabet. Without proper rendering support, you may see errors in display. Town in Manipur, IndiaMoirang Keke Moilang, Kege MoirangtownA statue of Netaji Subhashchandra Bose in the INA Memorial Complex in MoirangMoirangShow map of ManipurMoirangShow map of IndiaCoordinates: 24°30′N 93°46′E / 24.5°N 93.77°E / 24.5; 93.77CountryIndiaStateManipurDistrictBishnupurElevation766 m (2,513 ft)Population (2001) •...

Sungai TabukanKecamatanPeta lokasi Kecamatan Sungai TabukanNegara IndonesiaProvinsiKalimantan SelatanKabupatenHulu Sungai UtaraPemerintahan • CamatHandi Rizali, S.SosPopulasi • Total- jiwaKode Kemendagri63.08.10 Kode BPS6308031 Luas- km²Desa/kelurahan- Sungai Tabukan adalah sebuah kecamatan di Kabupaten Hulu Sungai Utara, Kalimantan Selatan, Indonesia. lbsKecamatan Sungai Tabukan, Kabupaten Hulu Sungai Utara, Kalimantan SelatanDesa Banua Hanyar Galagah Galagah Hu...

 

Overview of immigration to Portugal As of 2021, Portugal had 1,198,793 inhabitants that were born in a foreign country, out of 10,467,366 inhabitants, accounting for 11.5% of its total population.[1][2]Historical populationYearPop.±% p.a.1849 3,411,454—    1864 4,188,419+1.38%1878 4,550,699+0.59%1890 5,049,729+0.87%1900 5,423,132+0.72%1911 5,969,056+0.88%1920 6,032,991+0.12%1930 6,825,883+1.24%1940 7,722,152+1.24%1950 8,510,240+0.98%1960 8,851,240+0.39%1...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies excessively on references to primary sources. Please improve this article by adding secondary or tertiary sources. Find sources: Integrated Data Viewer – news · newspapers · books · scholar · JSTOR (December 2006) (Learn how and when to remove this template message) This article in...

Brazilian physician and activist Francisca Praguer FroesBornFrancisca Praguer Froes(1872-10-21)21 October 1872Cachoeira, Bahia, BrazilDied16 November 1931(1931-11-16) (aged 59)Rio de Janeiro, BrazilNationalityBrazilianSpouseJoão Américo Garcez Fróes Francisca Praguer Fróes (Cachoeira, Bahia, 21 October 1872 – Rio de Janeiro, 16 November 1931) was a Brazilian physician, activist, feminist and writer. She was one of five women in Brazil to complete a degree of higher education in 189...

 

For the Game & Watch title of the same name, see List of Game & Watch games. 2001 video gameSnoopy TennisNorth American box artDeveloper(s)Mermaid StudiosPublisher(s)InfogramesPlatform(s)Game Boy ColorReleaseNA: April 3, 2001[1]PAL: October 26, 2001JP: June 20, 2001Genre(s)SportsMode(s)Single-player, multiplayer Snoopy Tennis is a sports video game developed by the British company Mermaid Studios and published by Infogrames. It was released for the Game Boy Color in 2001. Rece...

 

This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Eastern National Railway Austria – news · newspapers · books · scholar · JSTOR (June 2019) (Learn how and when to remove this template message) Railways lines in Galicia, 1897 The Imperial and Royal Eastern National Railway (German: k.k. Östliche Staatsbahn, ÖStB) was a n...

American professional golfer (born 1987) Brian HarmanHarman in 2015Personal informationFull nameBrian Eric HarmanNicknameThe Butcher[1]Born (1987-01-19) January 19, 1987 (age 36)Savannah, Georgia, U.S.Height5 ft 7 in (1.70 m)Weight155 lb (70 kg; 11.1 st)Sporting nationality United StatesResidenceSt. Simons, Georgia, U.S.Spouse Kelly Van Slyke ​(m. 2014)​Children3CareerCollegeUniversity of GeorgiaTurned professional20...

 

Iranian football club This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Foolad F.C. – news · newspapers · books · scholar · JSTOR (May 2021) (Learn how and when to remove this template message) Football clubFooladفولادFull nameFoolad Khuzestan Football ClubNickname(s)Foolad Mardaan (Men of Steel) Founded2...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!