Schörl kristallisiert mit trigonaler Symmetrie und bildet schwarze, oft gut ausgebildete, prismatische Kristalle von wenigen Zentimetern Größe, die in seltenen Fällen über einen Meter lang werden können. Die Prismenflächen zeigen oft eine deutliche Streifung in Längsrichtung. Im Dünnschliff zeigt Schörl einen sehr starken Pleochroismus von blass gelblich-braun nach intensiv gelb-braun. Wie alle Minerale der Turmalingruppe ist Schörl stark pyroelektrisch und piezoelektrisch.[7]
Typlokalität sind die Seifen in Flusssedimenten des sächsischen Erzgebirges, die seit dem 12. Jahrhundert von eingewanderten Bergleuten aus dem Fichtelgebirge abgebaut wurden. Hier tritt Schörl zusammen mit Zinnstein auf.[8]
Im Jahr 1562, veröffentlichte der deutsche Pfarrer Johannes Mathesius seine Sarepta Oder Bergpostill, Sampt der Joachimßthalischen kurtzen Chroniken, eine Sammlung von 16 Predigten. In der 1559 entstandenen IX. Predigt „Vom Zin / Bley / Glet / Wismut und Spießglaß“ erwähnt er den Schürl, der zusammen mit dem Zwitter (Zinnstein) vorkommt und die Qualität des gewonnenen Zinns beeinträchtigt.[11][10][8]
Über die Herkunft des Wortes Schörl gibt es verschiedene Hypothesen. Wahrscheinlich ist ein gemeinsamer Ursprung mit dem Wort Schor für Abfall. Auch ein Ursprung im althochdeutschenSchoro bzw. Schorlo für Felsgrund wurde in Betracht gezogen. Die mittelalterlichen Funde im sächsischen Erzgebirgskreis nahe der Ortschaft Zschorlau führten zu der Vermutung eines gemeinsamen Ursprungs von Orts- und Mineralname. Einerseits wurde vermutet, das Mineral sei nach seinem Fundort nahe Zschorlau, vor 1400 auch Schorl, Schorla, Schorle und Schorlo, benannt worden. Umgekehrt wurde auch vermutet, der Ort könnte nach dem Mineral benannt worden sein.[8] Für den Ortsnamen Zschorlau wird eher eine Ableitung vom sorbischen Wort žórło für Quelle angenommen.[12]
Der schwedische Name skörl geht möglicherweise auf skör (spröde) zurück. Bis etwa 1600 waren noch folgende Namen in Gebrauch: Schurel, Schörle und auch Schurl. Im 18. Jahrhundert setzte sich dann im deutschen Sprachraum der Name Schörl durch, der auch heute noch Verwendung findet. Im 18. Jahrhundert wurden die Bezeichnungen shorl und shirl in den angelsächsischen Sprachraum eingeführt, im 19. Jahrhundert auch die Bezeichnungen common schorl, schörl, schorl und iron tourmaline.[8]
Die seit 2001 gültige und bislang von der IMA verwendete 9. Auflage der Strunz’schen Mineralsystematik führt den Schörl in der Klasse 9 der „Silikate und Germanate“ und dort in die Abteilung C der „Ringsilikate“ auf. Diese Abteilung ist weiter unterteilt nach der Größe, Verknüpfung und Verzweigung der Silikatringe, so dass das Mineral entsprechend seinem Aufbau in der Unterabteilung „K. [Si6O18]12−-Sechser-Einfachringe mit inselartigen, komplexen Anionen“ zu finden ist, wo es zusammen mit Buergerit, Chromdravit (heute Chrom-Dravit), Dravit, Elbait, Feruvit, Foitit, Liddicoatit (heute Fluor-Liddicoatit), Magnesiofoitit, Olenit, Povondrait (Rn), Rossmanit, Uvit, Vanadium-Dravit zur „Turmalingruppe“ mit der System-Nr. 9.CK.05 gehört.[4]
Auch die veraltete, aber noch gebräuchliche 8. Auflage der Mineralsystematik nach Strunz ordnet den Schörl in die Mineralklasse „VIII Silikate und Germanate“ und in die Abteilung „C. Ringsilikate (Cyclosilikate)“ ein, wo er zusammen mit Buergerit, Dravit, Elbait, Tsilaisit (H), Uvit die „Turmalingruppe“ mit der System-Nr. VIII/C.08 bildet.
Schörl ist das Fe2+- Analog von Dravit und hat die idealisierte Zusammensetzung [X]Na[Y]Fe2+3[Z]Al6([T]Si6O18)(BO3)3[V](OH)3[W](OH), wobei [X], [Y], [Z], [T], [V] und [W] die Positionen in der Turmalinstruktur sind.[15] Natürliche Schörle sind komplexe Mischkristalle mit variablen Gehalten der leichten Elemente Wasserstoff (H), Lithium (Li) und Bor (B) und enthalten neben verschiedenen weiteren Elementen fast immer auch dreiwertiges Eisen. Vollständige chemische Analysen erfordern daher eine Kombination verschiedener, aufwendiger Analysemethoden und werden selten durchgeführt.[17] Für einen Schörl aus dem Alto Lighona Pegmatitfeld in Zambezia, Mozambique wurde folgende Strukturformel ermittelt:[18]
Die Struktur ist die von Turmalin. Natrium (Na+) wird auf der von neu Sauerstoffen umgebenen [X]-Position eingebaut, Eisen (Fe2+) auf der oktaedrisch koordinierten [Y]-Position, die ebenfalls oktaedrisch koordinierte [Z]-Position ist mit Aluminium (Al3+) besetzt und Silicium (Si4+) besetzt die tetraedrisch von 4 Sauerstoffionen umgebene T-Position. Die Anionenpositionen [V] und [W] sind beide mit (OH)-Gruppen belegt.[5] Eine ungeordnete Verteilung von Fe2+ auf die verschiedenen oktaedrischen Positionen [Y] und [Z], wie für Magnesium im Dravit beobachtet, spielt beim Schörl fast keine Rolle. Auf der [Z]-Position wird Eisen fast nur als Fe3+ eingebaut.[22][19]
↑ abcdef
Suzanne Fortier, Gabrielle Donnay: Schorl refinement showing composition dependence of the tourmaline structure. In: The Canadian Mineralogist. Band13, 1975, S.173–177 (englisch, rruff.info [PDF; 411kB; abgerufen am 8. Dezember 2020]).
↑ abcd
Takeshi Tomisaka: Synthesis Of Some End-Members Of The Tourmaline Group. In: Mineralogical Journal. Band5, 1968, S.355–364 (englisch, jstage.jst.go.jp [PDF; 872kB; abgerufen am 8. Dezember 2020]).
↑ abcdef
Schorl. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (englisch, handbookofmineralogy.org [PDF; 73kB; abgerufen am 9. Januar 2021]).
↑ abcdef
Andreas Ertl: Über die Etymologie und die Typlokalitäten des Minerals Schörl. In: Mitteilungen der Österreichischen Mineralogischen Gesellschaft. Band152, 2006, S.7–16 (uibk.ac.at [PDF; 173kB; abgerufen am 2. August 2020]).
↑
Ulrich Rülein von Calw: Eyn wohlgeordnet und nützlich büchlein, wie man bergwerk suchen und finden soll. Augsburg 1505 (Digitalisat [abgerufen am 30. August 2020]).
↑ abcdThomas Witzke: Schörl. In: Homepage von Thomas Witzke. Abgerufen am 30. August 2020.
↑ ab
Johannes Mathesius: Sarepta Oder Bergpostill, Sampt der Joachimßthalischen kurtzen Chroniken. Nürnberg 1562 (eingeschränkte Vorschau in der Google-Buchsuche).
↑
Romé de L'Isle, Jean Baptiste Louis: Essai de cristallographie, ou description des figures géométriques propres à différens corps du regne minéral, connus vulgairement sous le nom de cristaux. Didot jeune, Paris 1772, S.243–281, doi:10.3931/e-rara-16480 (französisch).
↑
Martin Heinrich Klaproth: CXCV. Chemische Untersuchung des gemeinen Schörls. In: Beiträge zur chemischen Kenntniss der Mineralkörper. Band5, 1810, S.144–149 (e-rara.ch [PDF; 2,1MB; abgerufen am 26. September 2020]).
↑ ab
Darrell J. Henry, Milan Novák (Chairman), Frank C. Hawthorne, Andreas Ertl, Barbara L. Dutrow, Pavel Uher, and Federico Pezzotta: Nomenclature of the tourmaline-supergroup minerals. In: The American Mineralogist. Band96, 2011, S.895–913 (englisch, [1] [PDF; 617kB; abgerufen am 13. Dezember 2020]).
↑
Darrell J. Henry, Barbara L. Dutrow: Tourmaline studies through time: contributions to scientific advancements. In: Journal of Geosciences. Band63, 2018, S.77–98 (englisch, jgeosci.org [PDF; 2,2MB; abgerufen am 12. August 2020]).
↑
M. Darby Dyar, Marjorie E. Taylor, Timothy M. Lutz, Carl A. Francis, Charles V. Guidotti, and Michael Wise: Inclusive chemical characterization of tourmaline: Mössbauer study of Fe valence andsite occupancy. In: American Mineralogist. Band83, 1998, S.848–864 (englisch, rruff.info [PDF; 209kB; abgerufen am 27. Dezember 2020]).
↑ ab
Fernando Cámara, Luisa Ottolini and Frank C. Hawthorne: Crystal chemistry of three tourmalines by SREF, EMPA, and SIMS. In: American Mineralogist. Band87, 2002, S.1437–1442 (englisch, rruff.info [PDF; 227kB; abgerufen am 27. Dezember 2020]).
↑ ab
Andreas Ertl, Uwe Kolitsch, M. Darby Dyar, John M. Hughes, George R. Rossman,Aadam Pieczka, Darrell J. Henry, Federico Pezzotta, Stefan Prowatke, Christian L. Lengauer, Wilfried Körner, Franz Brandstätter, Carl A. Francis, Markus Prem and Ekkehart Tillmanns: Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline. In: American Mineralogist. Band97, 2012, S.1402–1416 (englisch, researchgate.net [PDF; 3,4MB; abgerufen am 8. Januar 2021]).
↑
Erich S. Bloodaxe, John M. Hughes, M. Darby Dyar, Edward S. Grew, and Charles V. Guidotti: Linking structure and chemistry in the Schorl-Dravite series. In: American Mineralogist. Band84, 1999, S.922–928 (englisch, rruff.info [PDF; 54kB; abgerufen am 27. Dezember 2020]).
↑ ab
Ferdinando Bosi, Giovanni B. Andreozzi, Marcella Federico, Giorgio Graziani, and Sergio Lucchesi: Crystal chemistry of the elbaite-schorl series. In: American Mineralogist. Band90, 2005, S.1784–1792 (englisch, rruff.info [PDF; 284kB; abgerufen am 27. Dezember 2020]).
↑
Joel D. Grice and T. Scott Ercit: Ordering of Fe and Mg in the tourmaline crystal structure: The correct formula. In: Neues Jahrbuch für Mineralogie Abhandlungen. Band165, 1993, S.245–266 (englisch, researchgate.net [PDF; 373kB; abgerufen am 8. Januar 2021]).