Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen (0 °C, 1000 hPa).
Saccharose [zaxaˈroːzə] (zu lateinischsaccharum bzw. altgriechischσάκχαρονsákcharon, „Zucker“), umgangssprachlich Haushaltszucker, Kristallzucker oder einfach Zucker genannt, ist ein Disaccharid aus Glucose und Fructose und somit ein Kohlenhydrat. Andere Bezeichnungen für Saccharose sind Rohrzucker, Rübenzucker, Raffinadezucker oder raffinierter Zucker, brauner Zucker (im karamellisierten raffinierten Zustand), Rohzucker (im zwar auch oft braunen, aber nicht damit zu verwechselnden unraffinierten Zustand). Vorwiegend im englischen Sprachbereich sowie im INCI-Code wird die Bezeichnung Sucrose verwendet.
Die folgende Kondensation von UDP-Glucose und Fructose-6-P zu Saccharose-6-phosphat wird von dem Enzym Saccharose-phosphat-Synthase katalysiert. Die dafür nötige Energie bringt die Abspaltung von Uridindiphosphat (UDP). Zuletzt wird der Phosphatrest in einer irreversiblen Reaktion durch das Enzym Saccharose-phosphat-Phosphatase abgespalten, sodass Saccharose entsteht.
Bedeutung als Transportzucker
Saccharose ist der wichtigste Transportzucker in Pflanzen. Dazu eignet sie sich besser als freie Hexosen, da sie als nicht-reduzierendes Disaccharid chemisch inert ist. Die durch die Photosynthese in grünen Pflanzenzellen bei Licht entstehende Saccharose gelangt durch passiven Transport in den Apoplasten und anschließend durch aktiven Transport in das assimilatleitende Phloem der pflanzlichen Leitgewebe. Im Phloem wird sie zu anderen, nicht-photosynthetischen Geweben, wie z. B. Wachstumszonen oder Speichergeweben, transportiert.
Für den Saccharose-Abbau in den Zielgeweben gibt es unterschiedliche Möglichkeiten.
In Wachstumszonen wie Spross- und Wurzelspitze (Meristeme) wird Saccharose aus dem Phloem symplasmatisch durch Plasmodesmata transportiert. In den Zellen wird sie in Umkehr der Synthesereaktion durch das Enzym Saccharose-Synthase mit UDP zu UDP-Glucose und Fructose gespalten. Die beiden Hexosen können zu Glucose-6-P umgeformt und z. B. zur Energiegewinnung in die Glycolyse eingeführt werden.
In Speichergeweben wird Saccharose apoplastisch aus dem Phloem zu den Zielzellen transportiert. Sie kann durch aktiven Transport in die Zelle aufgenommen werden und dort von der Saccharose-Synthase abgebaut werden. Der Großteil wird jedoch in der Zellwand von Invertasen in Glucose und Fructose gespalten. Die beiden Monosaccharide können durch Symporter von der Zelle aufgenommen werden, wo sie als Glucose-6-P in den Chloroplasten transportiert und zur Synthese von Speicherstärke verwendet werden.
Saccharose ist ein nicht-reduzierendes Disaccharid. Nicht-reduzierende Disaccharide sind über ihre beiden anomeren C-Atome O-glycosidisch miteinander verknüpft, ihre chemische Bezeichnung endet mit -sid. Dies bedeutet, dass im Saccharose-Molekül die beiden Komponenten so miteinander verbunden vorliegen, dass keine Aldehydgruppe unter Ringöffnung (weder vom Glucose- noch vom Fructose-Molekül) gebildet werden kann. Diese nicht-reduzierenden Atomgruppierungen nennt man Acetale. Acetale sind im Gegensatz zu Halbacetalen vergleichsweise stabil in basischem und neutralem Milieu.
Saccharose zeigt daher bei der stark alkalischen Fehling-Probe eine negative Nachweisreaktion. Bei der Seliwanoff-Probe reagiert Saccharose positiv.[7]
In saurer Lösung (z. B. im Magen) oder durch das Enzym Invertase wird das Dimer Saccharose in die MonomereGlucose und Fructose gespalten. Dabei ändert sich der mit einem Polarimeter beobachtbare spezifische Drehwinkel. Dieses Phänomen nennt man Mutarotation. Die Änderung des Drehwinkels wird als Inversion bezeichnet, das dabei entstehende Zuckergemisch nennt man Invertzucker.
Physikalische Eigenschaften
Erhitzung und Verbrennung
Beim Erhitzen von Saccharose auf 185 °C schmilzt sie und bildet unter Teilzersetzung und Oxidation eine braun werdende glasartige Schmelze (Karamell).
Die spezifische Wärmekapazität von Saccharose beträgt etwa 1,24 kJ / (kg K).[8]
Wasserlöslichkeit
Saccharose ist in Wasser sehr gut löslich, dabei ist eine erhebliche Volumenzunahme zu beobachten. Die Löslichkeit ist, wie bei den meisten Feststoffen, temperaturabhängig:
Bei 20 °C erhält man eine Lösung mit 67 % Massenanteil (ω) (Dichte 1,33 kg/l), bei 100 °C dagegen eine 83 gew.-prozentige gesättigte Lösung mit 83 % Massenanteil (ω) (Dichte 1,44 kg/l), die beim Abkühlen jedoch keine Kristalle mehr ausscheidet („gehinderte Kristallisation“). Per Definition ist es damit eine „unterkühlte Flüssigkeit“. Es ist auch ohne großen Aufwand möglich, den Stoff in den „amorphen glasartigen Zustand“ zu überbringen. Als Grundlage dient z. B. ein halbes Kilogramm Zucker, der in 100 ml kochendem Wasser gelöst wird. Als dünne Schicht in eine rechteckige Schale gegossen, deren Boden mit antihaftbeschichtetem Papier ausgelegt ist, ergibt das nach Erkalten eine „Glasscheibe“.
Auch in technologischer Hinsicht verhalten sich „amorphe Zucker“ anders als kristalline (Komprimierfähigkeit, Oberflächeneigenschaften).[10]
Eine Lösung mit 60 % Massenanteil (ω) siedet bei 105 °C, eine Lösung mit 80 % Massenanteil (ω) bei 113 °C und eine Lösung mit 90 % Massenanteil (ω) bei 132 °C. (Letztere Werte entnommen aus dem Phasendiagramm von Saccharose und Wasser bei 100 kPa).
Drehung von polarisiertem Licht
Saccharose ist chiral und daher optisch aktiv: In wässriger Lösung dreht Saccharose polarisiertes Licht im Uhrzeigersinn (spezifischer Drehwinkel α = +66,5°·ml·dm−1·g−1[11]). Durch Spaltung von Saccharose entsteht ein Gemisch (Invertzucker), das halb aus Glucose und halb aus Fructose besteht. Diese Mischung dreht polarisiertes Licht gegen den Uhrzeigersinn (spezifischer Drehwinkel α = −20°·ml·dm−1·g−1), man beobachtet also eine Umkehrung der Drehungsrichtung („Inversion“); das 1:1-Gemisch aus Fructose und Glucose wird daher auch als Invertzucker bezeichnet.[12]
Die Süßkraft ist eine dimensionslose Größe, welche die relative Süße eines Stoffes angibt. Die Werte der Süßkraft beziehen sich dabei auf Saccharose, welcher eine Süßkraft von 1 zugeordnet wird.[16] Die Süßkraft dient einem halbquantitativen Vergleich insbesondere zu anderen natürlichen oder künstlichen Süßungsmitteln. Süßungsmittel können eine mehrere hundert- oder tausendfache Süßkraft gegenüber Saccharose aufweisen. Ein Derivat der Saccharose, D-(+)-Saccharoseoctaacetat, gehört zu den bittersten bekannten Verbindungen.
Bis zur industriellen Revolution im 19. Jahrhundert war reiner Zucker breiten Bevölkerungsschichten in Mitteleuropa kaum zugänglich. Zucker wurde dem Körper hauptsächlich beim Genuss von Gemüse und Obst sowie von Honig zugeführt. Erst seit der Züchtung der Zuckerrübe um 1800 und dem Beginn der industriellen Raffination von Saccharose wurde der Organismus mit größeren Mengen von Zucker konfrontiert.
Hoher Zuckerkonsum kann, vor allem, wenn es sich um „freien“ Zucker (englisch: free sugars) handelt – gemeint sind Mono- und Disaccharide, die den Lebensmitteln vom Hersteller, Koch oder Verbraucher zugesetzt werden, und natürlicherweise in Honig, Sirup und Fruchtsäften enthaltener Zucker – zu Übergewicht und damit zu einem erhöhten Krankheitsrisiko für Diabetes mellitus führen.
Studien von John Yudkin legen nahe, dass zwischen der Aufnahme von Zucker und der Häufigkeit von Herzinfarkten ein Zusammenhang besteht. Es wird diskutiert, ob Zucker die Entstehung von Krebs fördert und ob eine zuckerfreie Nahrung das Wachstum von Krebs behindern kann. Diese These hat einige Anhänger auch unter Ärzten, wird aktiv erforscht, und es gibt Initiativen für eine Krebsdiät, die auf zuckerfreier oder zuckerarmer Ernährung basiert.[18][19][20][21][22]
Fehlende oder ungenügende Zahnpflege nach dem Konsum von zuckerhaltigen Nahrungsmitteln führt zur Bildung von Zahnkaries. Viele Zuckerarten können von Bakterien im Mund zu zahnschädigenden Säuren umgewandelt werden. Insbesondere wird Saccharose vom Bakterium Streptococcus mutans zu Dextranen verarbeitet, mit deren Hilfe diese sich besonders hartnäckig an Zähne heften können.
Die Weltgesundheitsorganisation empfiehlt, dass der sogenannte freie Zucker höchstens 10 % der täglichen menschlichen Energieaufnahme ausmachen sollte, und idealerweise auf 5 % reduziert werden sollte.[23][24] Dies wird in Industriestaaten zumeist überschritten.
↑Helmut Horn, Cord Lüllmann: Das große Honigbuch. 3. Auflage. Kosmos, Stuttgart 2006, ISBN 3-440-10838-4, S. 29–30.
↑Klaus Ruppersberg, Hanne Rautenstrauch, Wolfgang Proske: Kohlenhydratnachweise im Chemieunterricht – welche werden im Unterricht gelehrt, welche sollten gelehrt werden? Kohlenhydratnachweise im experimentellen Chemieunterricht unter Berücksichtigung von Sicherheitsaspekten. 2022, doi:10.25656/01:28447 (pedocs.de [abgerufen am 24. Mai 2024]).
↑M. K. Miah, U. Bickel, R. Mehvar: Development and validation of a sensitive UPLC-MS/MS method for the quantitation of [(13)C]sucrose in rat plasma, blood, and brain: Its application to the measurement of blood-brain barrier permeability. In: J Chromatogr B Analyt Technol Biomed Life Sci. 1015-1016, 15. März 2016, S. 105–110. PMID 26919445
↑P. Kubica, A. Kot-Wasik, A. Wasik, J. Namieśnik, P. Landowski: Modern approach for determination of lactulose, mannitol and sucrose in human urine using HPLC-MS/MS for the studies of intestinal and upper digestive tract permeability. In: J Chromatogr B Analyt Technol Biomed Life Sci. 907, 15. Oct 2012, S. 34–40. PMID 22985725
↑S. Moldoveanu, W. Scott, J. Zhu: Analysis of small carbohydrates in several bioactive botanicals by gas chromatography with mass spectrometry and liquid chromatography with tandem mass spectrometry. In: J Sep Sci. 38(21), Nov 2015, S. 3677–3686. PMID 26315495
↑Eintrag zu Süßstoffe. In: Römpp Online. Georg Thieme Verlag, abgerufen am 8. Dezember 2012.
↑Ethan B. Butler, Yuhua Zhao, Cristina Muñoz-Pinedo, Jianrong Lu, Ming Tan: Stalling the engine of resistance: Targeting cancer metabolism to overcome therapeutic resistance. In: Cancer Research. Bd. 73, Nr. 9, 2013, S. 2709–2717, doi:10.1158/0008-5472.CAN-12-3009. Abgerufen am 13. März 2014.
↑Linda C. Nebeling, Edith Lerner: Implementing a ketogenic diet based on medium-chain triglyceride oil in pediatric patients with cancer. In: Journal of the American Dietetic Association. Bd. 95, Nr. 6, 1995, S. 693–697, doi:10.1016/S0002-8223(95)00189-1. Abgerufen am 13. März 2014.
↑U. Schroeder, B. Himpe, R. Pries, R. Vonthein, S. Nitsch, B. Wollenberg: Decline of Lactate in Tumor Tissue After Ketogenic Diet: In vivo microdialysis study in patients with head and neck cancer. In: Nutrition and Cancer. Bd. 65, Nr. 6, 2013, S. 843–849, doi:10.1080/01635581.2013.804579. Abgerufen am 13. März 2014.
↑Ashraf Virmani, Luigi Pinto, Zbigniew Binienda, Syed Ali: Food, nutrigenomics, and neurodegeneration-neuroprotection by what you eat! In: Molecular Neurobiology. Bd. 48, Nr. 2, 2013, S. 353–362, doi:10.1007/s12035-013-8498-3. Abgerufen am 13. März 2014.