Gebundene Zustände der schweren Quarks und haben eigene Namen: gebundene -Zustände (also charm-Quark und -Antiquark) heißen Charmonium, gebundene -Zustände Bottomonium. Da die Lebensdauer des Top-Quarks extrem kurz ist, können sich höchstwahrscheinlich keine -Systeme (Toponium) bilden.
Gebundene Quark-Antiquark-Zustände der leichten Quarks () mischen sich aufgrund der geringen Massendifferenz quantenmechanisch – vor allem mit . Daher sind die aus ihnen gebildeten Mesonen nicht einer einzelnen Quarksorte zuordenbar.
Der Name Quarkonium ist analog zum Positronium, bei dem ein Elektron und ein Positron zum gebunden sind. Wie beim Positronium kennzeichnet man Quarkonia durch folgende Quantenzahlen:
in der Nomenklatur (Termsymbol) bzw. (spektroskopische Bezeichnung), wobei der Bahndrehimpuls durch einen Großbuchstaben (siehe Tabelle) angegeben wird.
Man beachte folgenden Unterschied in der Namensgebung: Während bei Positronium die Nomenklatur der Atomphysik gilt mit der Hauptquantenzahl ( für die Zahl der Knoten der Radialwellenfunktion, klein für den Bahndrehimpuls), verwendet man beim Quarkonium die Nomenklatur der Kernphysik mit . Einem 23P1-Positronium entspricht also ein 13P1-Charmonium.
↑aus historischen Gründen wird der 1−−-Grundzustand als J/ψ-Meson bezeichnet
Für die aus schweren Quarks () gebildeten Mesonen wird, sofern bekannt, die spektroskopische Bezeichnung () mit angegeben – z. B. , sowie als weiterer Index – z. B. . Letzteres ist nicht nötig bei , weil dann . Ist eine spektroskopische Zuordnung mangels Daten nicht möglich, wird zur näheren Bezeichnung die Masse in MeV/c2 angegeben, z. B. .
Für die aus leichten Quarks () gebildeten Mesonen verwendet man die spektroskopische Bezeichnung nicht; stattdessen wird zur näheren Bezeichnung die Masse in MeV/c2 angegeben.
Bei den niedrigsten Zuständen kann man diese Angaben weglassen – also und .
Die Quantenzahlen des X(3872)-Teilchens sind Gegenstand aktueller Untersuchungen,[4] seine Identität ist nicht vollständig geklärt. Es kann sich handeln um:
einen Kandidaten für den 11D2-Zustand;
einen hybriden Charmonium-Zustand;
ein -Molekül.
2005 veröffentlichte das BaBar-Experiment die Entdeckung des neuen Zustands Y(4260).[5][6]
Die Beobachtungen wurden von den Experimenten CLEO und Belle bestätigt. Zuerst wurde das neue Teilchen für ein Charmonium gehalten, aber inzwischen legen die Beobachtungen exotischere Erklärungen nahe, wie ein D-„Molekül“, ein Tetraquark oder ein hybrides Meson.