Jerzy Lewi

Jerzy Lewi
Verband Polen Polen (bis 1971)
Schweden Schweden (1972)
Geboren 22. April 1949
Breslau, Polen
Gestorben 30. Oktober 1972
Lund
Beste Elo‑Zahl 2430 (Juli 1971 bis Juli 1972)

Jerzy Lewi (* 22. April 1949 in Breslau; † 30. Oktober 1972 in Lund) war ein polnischer Schachmeister.

Lewi war eines der größten Talente des polnischen Schachs. 1965 bis 1969 gewann er fünf Mal in Folge die polnische Jugendmeisterschaft. 1967 wurde er bei der Jugendeuropameisterschaft in Groningen Dritter nach Anatoli Karpow und András Adorján, aber vor Jan Timman. Dies war der größte Erfolg eines polnischen Jugendspielers in den 1960er Jahren, dabei hat Lewi eine aussichtsreiche Stellung gegen Karpow nicht gewinnen können, was einen noch höheren Platz bedeutet hätte.

1969 siegte Lewi in Lublin bei der polnischen Meisterschaft und qualifizierte sich damit für das Zonenturnier in Athen im gleichen Jahr. Nach dem Turnier, bei dem er einen hinteren Rang einnahm, kehrte er nicht mehr nach Polen zurück, sondern siedelte sich in Schweden an, wo er ein Mathematikstudium aufnahm und an Turnieren der führenden schwedischen Schachspieler teilnahm. In Polen kam Lewis Name auf den Zensurindex und durfte über mehrere Jahre nicht erwähnt werden. Lewi starb 1972, 23-jährig, bei einem Autounfall.

Vereine

In Polen spielte Lewi für den KS Maraton Warszawa, mit dem er 1968 polnischer Mannschaftsmeister wurde[1], in Schweden für den Malmö Allmänna Schackklub[2].

Einzelnachweise

  1. Jerzy Lewis Ergebnisse bei polnischen Mannschaftsmeisterschaften auf olimpbase.org (englisch)
  2. Nachruf (PDF-Datei; 6,1 MB) in Tidskrift för Schack 9/1972, S. 270 und 274 (schwedisch)
Commons: Jerzy Lewi – Sammlung von Bildern, Videos und Audiodateien

Read other articles:

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 18 de junio de 2013. Gobernadora general de CanadáGovernor General of Canada  (inglés)Gouverneur général du Canada  (francés)Bandera de la gobernadora generalInsignia de la gobernadora general Mary Simon Desde el 26 de julio de 2021Ámbito Canadá CanadáSede Ottawa, Ontario Quebec, QuebecResidencia Rideau Hall, Ottawa Ciudadela de Quebec, QuebecTr...

 

MesidahKecamatanNegara IndonesiaProvinsiAcehKabupatenBener MeriahPemerintahan • Camat-Populasi • Total- jiwaKode Kemendagri11.17.09 Kode BPS1117061 Luas286,83 km²[1]Desa/kelurahan15 Kecamatan Mesidah, Kabupaten Bener Meriah Mesidah adalah sebuah kecamatan di Kabupaten Bener Meriah, Aceh, Indonesia, hasil pemekaran dari kecamatan Syiah Utama, dibentuk berdasarkan Qanun Nomor 5 tahun 2007,[2] Pusat pemerintahan berkedududkan di gampong Wer Tingkem.&...

 

The Incredible Shrinking ManPoster rilis teatrikalkarya Reynold BrownSutradaraJack ArnoldProduser Albert Zugsmith Ditulis olehRichard MathesonRichard Alan Simmons (tidak disebutkan)[1]SkenarioRichard MathesonRichard Alan Simmons (tidak disebutkan)[1]BerdasarkanThe Shrinking Manoleh Richard MathesonPemeranGrant WilliamsRandy StuartApril KentPaul LangtonBilly CurtisNaratorGrant WilliamsPenata musikUncredited:Irving GetzHans J. SalterHerman SteinSinematograferEllis W. Carte...

Contemporary Art, museum in Chatuchak, BangkokMuseum of Contemporary ArtFormer nameArt CentreEstablished23 March 2012Location499 Vibhavadi Rangsit Rd. Ladyao, Chatuchak, Bangkok 10900TypeContemporary Art, museumFounderBoonchai BencharongkulWebsitemocabangkok.com The Museum of Contemporary Art is an art museum in Bangkok, Thailand. It is privately owned by business executive Boonchai Bencharongkul, and was opened in 2012. The museum, one of the largest contemporary art museums in Asia, feature...

 

Plato Kratergegevens Coördinaten 51° 36′ NB, 9° 18′ WL Diameter 101 km Kraterdiepte 1,5 km Colongitude 9° bij zonsopgang Vernoemd naar Plato Vernoemd in 1935 De locatie van Plato op de maan De cirkelvormige walvlakte Plato is een inslagkrater op de naar de Aarde toegekeerde kant van de Maan. Hij bevindt zich net ten noorden van de noordoostkust van de maanzee Mare Imbrium, aan het westelijke uiteinde van de Montes Alpes. De kraterbodem of depressie heeft een relatief lage albe...

 

Constituency of the National Assembly of France You can help expand this article with text translated from the corresponding article in French. (March 2020) Click [show] for important translation instructions. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the English Wikipedia. Do not...

Halaman ini berisi artikel tentang klub sepak bola wanita. Untuk klub sepak bola pria, lihat Sport Club Internacional. InternacionalNama lengkapSport Club InternacionalJulukanGurias ColoradasBerdiri1983StadionEstádio Beira-Rio(Kapasitas: 50.128)LigaBrasileiro Série A1Campeonato Gaúcho [pt]2022Brasileiro Série A1, Peringkat ke-3Campeonato Gaúcho [pt], Peringkat ke-2 Kostum kandang Kostum tandang Kostum ketiga Sport Club Internacional atau umum dikenal dengan nama...

 

?Куліга туамотуанська Охоронний статус Під загрозою зникнення (МСОП 3.1)[1] Біологічна класифікація Домен: Еукаріоти (Eukaryota) Царство: Тварини (Animalia) Тип: Хордові (Chordata) Клас: Птахи (Aves) Ряд: Сивкоподібні (Charadriiformes) Родина: Баранцеві (Scolopacidae) Рід: Куліга (Prosobonia) Вид: Куліга

 

BrahmanandamNama lahirBrahmanandam Kanneganti.Lahir1 Februari 1956 (umur 67)Sattenapalli, Negara bagian Andhra, IndiaKebangsaanIndiaAnak2 Brahmanandam Kanneganti (kelahiran 1 Februari 1956), adalah sebuah aktor dan komedian film India. Berasal dari Sattenapalli di Andhra Pradesh, ia kebanyakan berakting dalam film-film Telugu. Sebelum memasuki perfilman, ia menjadi seorang pengajar bahasa Telugu di Attili, sebuah kota di distrik Godavari Barat, Andhra Pradesh. Ia sekarang memegang Guinne...

  لمعانٍ أخرى، طالع بلدة لوغان (توضيح). بلدة لوغان الإحداثيات 43°51′28″N 86°07′05″W / 43.857777777778°N 86.118055555556°W / 43.857777777778; -86.118055555556  [1] تقسيم إداري  البلد الولايات المتحدة[2]  التقسيم الأعلى مقاطعة ماسون  خصائص جغرافية  المساحة 36.0 ميل مربع  ارت...

 

Royal Canadian Air Force AssociationAbbreviationRCAFAFormation1948TypeNot-for-profit organization with royal patronageLegal statusActivePurposeCommunity service organization of Royal Canadian Air Force (RCAF) veterans and aviation enthusiastsHeadquartersOttawa, Ontario, CanadaRegion served CanadaOfficial language English, FrenchWebsitercafassociation.ca The Royal Canadian Air Force Association (RCAFA), formerly the Air Force Association of Canada, is a not-for-profit community service organiz...

 

Mexican-American long-distance runner Diego EstradaDiego Estrada at the 2012 Summer OlympicsPersonal informationNationalityMexican AmericanBorn (1989-12-19) December 19, 1989 (age 33)Michoacán, MexicoSportSportTrackEvent(s)1500 metres, 5000 metres, 10,000 metresCollege teamNorthern ArizonaCoached byJoe VigilAchievements and titlesPersonal best(s)1500 metres: 3:41.80[1] 5000 metres: 13:15.33[1] 10,000 metres: 27:30.53[1]Updated on 4-29-16. Juan Diego Estrada Const...

Star Ferry Pier, CentralSouthern façade of Star Ferry Pier in 2012.Traditional Chinese中環天星碼頭TranscriptionsStandard MandarinHanyu PinyinZhōnghuán Tiānxīng MǎtóuHakkaRomanizationZung1van2 Tien1sin1 Ma1tiu2Yue: CantoneseJyutpingZung1waan4 Tin1sing1 Ma5tau4 Star Ferry Pier, Central (Chinese: 中環天星碼頭) may refer to any of the successive generations of Central Ferry Piers in Central, Hong Kong used by the Star Ferry for its services across Victoria Harbour to T...

 

Family trees in Tolkien's Middle-earth Tolkien's Middle-earth family trees contribute to the impression of depth and realism in the stories set in his fantasy world by showing that each character is rooted in history with a rich network of relationships. J. R. R. Tolkien included multiple family trees in both The Lord of the Rings and The Silmarillion; they are variously for Elves, Dwarves, Hobbits, and Men. The family trees gave Tolkien, a philologist, a way of exploring and developing the e...

 

Part of the surface of the liver Bare area of the liverVertical disposition of the peritoneum. Main cavity, red; omental bursa, blue (bare area of the liver labeled at right, second from the top)The liver, as seen from behind. The bare area is visible on the upper-right, labeled as nonperitoneal surfacesDetailsPart ofLiverIdentifiersLatinArea nuda hepatisFMA14480Anatomical terminology[edit on Wikidata] The bare area of the liver (nonperitoneal area) is a large triangular area on the diaph...

1509–1511 fresco by Raphael This article is about the fresco by Raphael. For other uses, see Parnassus (disambiguation). The ParnassusArtistRaphaelYear1509–1511TypeFrescoDimensions670 cm (260 in) wideLocationApostolic Palace, Vatican City The Parnassus (Italian: Il Parnaso, referring to Mount Parnassus) is a fresco painting by the Italian High Renaissance artist Raphael in the Raphael Rooms (Stanze di Raffaello), in the Palace of the Vatican in Rome, painted at the commission of...

 

List of territories governed by the United Nations Not to be confused with United Nations trust territories. The UN flag, used for all administrations (except UNTAC) The flag used for UNTAC in Cambodia This is a list of territories which are directly administered, or once were, by the United Nations (UN). These are not to be confused with UN trust territories, which were run by a single country under a UN mandate. List Current Name Location Years Today part of United Nations Peacekeeping Forc...

 

1940 American filmThe Devil BatTheatrical release posterDirected byJean YarboroughWritten byJohn Thomas NevilleBased onoriginal story byGeorge BrickerProduced byJack GallagherStarringBela LugosiCinematographyArthur Martinelli, A.S.C.Edited byHolbrook N. ToddMusic byDavid Chudnow(musical director)ProductioncompanyProducers Releasing CorporationDistributed byProducers Releasing CorporationRelease date December 13, 1940 (1940-12-13)[1] Running time68 minutesCountryUnited S...

Structure-preserving map between two algebraic structures of the same type Not to be confused with holomorphism or homeomorphism. In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning same and μορφή (morphe) meaning form or shape. However, the word was apparently introduced to mathematics due to ...

 

Sporting event delegationKuwait at the2014 Summer Youth OlympicsIOC codeKUWNOCKuwait Olympic Committeein NanjingCompetitors5 in 4 sportsMedals Gold 0 Silver 0 Bronze 0 Total 0 Summer Youth Olympics appearances201020142018 Kuwait competed at the 2014 Summer Youth Olympics, in Nanjing, China from 16 August to 28 August 2014. Athletics Main article: Athletics at the 2014 Summer Youth Olympics Kuwait qualified two athletes.[1] Qualification Legend: Q=Final A (medal); qB=Final B (non-medal...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!