In der Mathematik ist Gromovs Satz über Betti-Zahlen ein Lehrsatz der globalen riemannschen Geometrie von Michail Leonidowitsch Gromow.
Satz
Sei eine -dimensionale vollständige riemannsche Mannigfaltigkeit nichtnegativer Schnittkrümmung. Dann gilt für die Betti-Zahlen (mit Koeffizienten in einem beliebigen Körper ):
- .
(Gromovs ursprüngliche Abschätzung war doppelt-exponentiell[1], die obige Verbesserung geht auf Abresch[2] zurück. Die vermutete optimale rechte Seite ist .)
Allgemeiner beweist Gromov, dass für eine -dimensionale geschlossene riemannsche Mannigfaltigkeit mit Schnittkrümmung und Durchmesser die Ungleichung
für eine Konstante gilt.
Weblinks
Einzelnachweise
- ↑ M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), no. 2, 179–195. (online)
- ↑ U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology. II. Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 475–502.