Vier hypothetischeReaktionsgleichungen bilden ein einfaches Modell, das alle Phänomene von chemischen Oszillatoren (wie der Belousov-Zhabotinsky-Reaktion) widerspiegelt.[1] Ein ähnliches Modellsystem wurde 1985 an der Humboldt-Universität zu Berlin durch Vereinfachung aus einem real existierenden Reaktionssystem abgeleitet.[2]
Die Konzentrationen von X und von Y reagieren empfindlich auf kleine Störungen und erreichen schnell einen oszillierenden Zustand, wenn die Gesamtreaktion weit vom Gleichgewichtszustand entfernt ist. Man hat also ein thermodynamisch offenes System und kann zwei Ratengleichungen für die Konzentration von X und von Y aufstellen:
Diese Differentialgleichungen können numerisch gelöst werden. Nebenstehende Abbildung zeigt einige Lösungen. Je nach Wahl der freien Parameterk1A, k2B, k3 und k4 ergibt sich unterschiedliches Verhalten: im oberen Fall sieht man stabile Oszillationen, während im unteren Fall bei anderer Wahl der Parameter die Konzentrationen X(t) und Y(t) einem Fixpunkt im Phasenraum zustreben.
Stabilitätsbetrachtung
Wie oben gezeigt, hat der Brüsselator je nach Parametrisierung stabile Oszillationen als Lösung oder strebt im Phasenraum einem Fixpunkt zu.
Dilip Kondepudi, Ilya Prigogine: Modern Thermodynamics. From Heat Engines to Dissipative Structures. John Wiley & Sons, Weinheim, New York 1998.
Einzelnachweise
↑R. J. Field: Eine oszillierende Reaktion. In: Chemie in unserer Zeit, 7. Jahrg 1973, Nr. 6, S. 171–176, doi:10.1002/ciuz.19730070603.
↑K. Bar-Eli: The minimal bromate oscillator simplified, J. Phys. Chem., 1985, doi:10.1021/j100259a030.
↑ abcDilip Kondepudi, Ilya Prigogine: Modern Thermodynamics. From Heat Engines to Dissipative Structures. John Wiley & Sons, Chichester u. a. 1998, ISBN 0-471-97393-9.