Biharmonische Abbildung

In der Mathematik ist die biharmonische Abbildung eine Verallgemeinerung des Begriffs der harmonischen Abbildung.

Eine Abbildung zwischen Riemannschen Mannigfaltigkeiten heißt biharmonisch, wenn sie ein kritischer Punkt des Bi-Energie-Funktionals

ist. Äquivalent muss die Euler-Lagrange-Gleichung

mit dem Riemannschen Krümmungstensor erfüllen.

Für harmonische Abbildungen nimmt das globale Minimum an, weshalb harmonische Abbildungen biharmonisch sind. Wenn die Schnittkrümmung von nichtpositiv ist, gilt auch die Umkehrung. Ohne diese Voraussetzung gibt es im Allgemeinen aber biharmonische Abbildungen, die nicht harmonisch sind.

Siehe auch

Literatur

  • Guoying Jiang: 2-harmonic maps and their first and second variational formulas. Chin. Ann. Math., Ser. A 7, 389–402 (1986).

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!