Bers-Schnitte und die mit ihrer Hilfe definierte skinning map spielen eine Rolle in vielen Beweisen der niedrig-dimensionalen Geometrie, zum Beispiel in Thurstons Beweis der Geometrisierung von Haken-Mannigfaltigkeiten.
Sei eine geschlosseneFläche und die zugehörige Flächengruppe. Man bezeichnet mit den Teichmüller-Raum von und mit den Raum aller derjenigen Homomorphismen, deren Bild eine quasifuchssche Gruppe ist.
entsprechende Teilmenge von der (zu gehörende) Bers-Schnitt.
Bers-Kompaktifizierung
Mittels der Einbettung von in den Modulraum der markierten hyperbolischen Mannigfaltigkeiten homotopieäquivalent zu kann man den Bers-Schnitt in diesen Modulraum einbetten. Sein Bild ist relativ kompakt, seine Kompaktifizierung heißt Bers-Kompaktifizierung des Teichmüller-Raums.
Kerckhoff und Thurston haben bewiesen, dass die Wirkung der Abbildungsklassengruppe auf der Bers-Kompaktifizierung des Teichmüller-Raums nicht stetig ist. Insbesondere stimmt die Bers-Kompaktifizierung nicht mit Thurstons Kompaktifizierung des Teichmüller-Raums überein.
ist auf der ersten Komponente die Identitätsabbildung, ist also von der Form
.
Die Abbildung
heißt skinning map.
Thurstons Bounded Image Theorem besagt, dass das Bild der skinning map endlichen Durchmesser hat. Es ist ein wesentlicher Schritt beim Beweis der Hyperbolisierung von Haken-Mannigfaltigkeiten.
Literatur
Lipman Bers: Uniformization, moduli, and Kleinian groups. Bull. London Math. Soc. 4 (1972), 257–300. pdf
Komori-Sugawa: Bers embedding of the Teichmüller space of a once-punctured torus. Conform. Geom. Dyn. 8 (2004), 115–142 pdf
Komori-Sugawa-Wada-Yamashita: Drawing Bers embeddings of the Teichmüller space of once-punctured tori. Experiment. Math. 15 (2006), no. 1, 51–60. pdf
Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!