Read other articles:
Raymond Théodore Troplong Información personalNacimiento 8 de octubre de 1795 Saint-Gaudens (Francia) Fallecimiento 1 de marzo de 1869 (73 años)Sepultura Plombières-les-Bains Nacionalidad FrancesaLengua materna Francés Información profesionalOcupación Político y juez Cargos ocupados Senador del Segundo ImperioPar de Francia Miembro de Académie des sciences morales et politiques [editar datos en Wikidata] Raymond-Théodore Troplong (* 8 de octubre de 1795-1 de marzo de 1869)...
كورفينو سان كيريكو الإحداثيات 45°00′38″N 9°09′45″E / 45.010555555556°N 9.1625°E / 45.010555555556; 9.1625 [1] تقسيم إداري البلد إيطاليا[2] التقسيم الأعلى مقاطعة بابية خصائص جغرافية المساحة 4.37 كيلومتر مربع (9 أكتوبر 2011)[3] ارتفاع 218 متر عدد السكان ...
The IslandLogo Sunday Island (edisi Minggu The Island)TipeSurat kabar harianFormatPrint, onlinePemilikUpali NewspapersDidirikan1981 (1981)BahasaInggrisPusat223, Bloemendhal Road, Colombo 13, Sri LankaSirkulasi surat kabar70,000 (Daily Island)103,000 (Sunday Island)Surat kabar saudariDivainaSitus webisland.lk The Island adalah sebuah surat kabar berbahasa Inggris harian di Sri Lanka. Surat kabar tersebut diterbitkan oleh Upali Newspapers. Sebagai surat kabar bersaudari dari Divaina, The I...
広島ガス株式会社HIROSHIMA GAS CO.,LTD. 本社種類 株式会社市場情報 東証プライム 95352000年3月1日上場 本社所在地 日本〒734-8555広島県広島市南区皆実町二丁目7番1号設立 1909年10月業種 電気・ガス業法人番号 2240001009205 代表者 代表取締役会長 田村興造代表取締役 社長執行役員 松藤研介資本金 51億81百万円発行済株式総数 67,998,590株売上高 連結822億円6,800万円(2019年3月)純資産
1965 studio album by Ray PriceBurning MemoriesStudio album by Ray PriceReleased1965GenreCountryLabelColumbiaProducerDon Law, Frank JonesRay Price chronology Love Life(1964) Burning Memories(1965) Western Strings(1965) Singles from Burning Memories Walk Me to the DoorReleased: December 24, 1962 Make the World Go AwayReleased: June 26, 1963 Burning MemoriesReleased: February 4, 1964 A Thing Called SadnessReleased: November 2, 1964 Burning Memories is a studio album by country music arti...
Ícone etno-religioso manju. A religião tradicional manju é a religião étnica da maioria do povo manju, o maior dos povos tunguses, na China. Pode ser chamada também xamanismo manju dado que a palavra xamã sendo originária do tungus šamán (homem de conhecimento),[1] mais tarde aplicada pelos multíscios ocidentais a prácticas religosas similares noutras culturas.[2] É composta por um sistema panteísta, acreditando num Deus universal chamado Apka Enduri (Deus dos Céus) o qual é f...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2018) بو ستورم معلومات شخصية الميلاد 3 فبراير 1987 (العمر 36 سنة) الطول 1.71 م (5 قدم 7 بوصة) مركز اللعب وسط الجنسية مملكة الدنمارك معلومات النادي النادي الحال...
Pour les articles homonymes, voir Astérix (homonymie). MV Asterix Le MV Asterix à Pearl Harbor en 2018. Type Bâtiment logistique Histoire A servi dans Forces maritimes du Pacifique Chantier naval MIL Davie Shipbuilding, Lauzon Quille posée 21 octobre 2008 Lancement 27 janvier 2009 Armé 6 mars 2018 Statut En service au Canada Équipage Équipage 150 Caractéristiques techniques Longueur 182,5 mètres Maître-bau 25,2 mètres Tirant d'eau 9,5 mètres Port en lourd 23 79...
Naypyidaw နေပြည်တော်NPTIbu kotaSearah jarum jam dari atas: Pagoda Uppatasanti, Taman Air Mancur, Zona Kementerian, Museum Permata, Majelis Persatuan BenderaNegara MyanmarAdministratifWilayah Persatuan Naypyidaw[1]Subdivisi8 kota mandiriDidirikan2005Dimasukkan sebagai kota2008Pemerintahan[2] • BadanKomite Pembangunan Naypyidaw • Wali kotaMyo AungLuas[3] • Total272,371 sq mi (7.054,37 km2)Populas...
CA04Stasiun Katahama片浜駅Stasiun Katahama pada 2006Lokasi254-1 Imazawa, Numazu-shi, Shizuoka-ken 410-0875JepangKoordinat35°07′05″N 138°49′10″E / 35.117986°N 138.819428°E / 35.117986; 138.819428Koordinat: 35°07′05″N 138°49′10″E / 35.117986°N 138.819428°E / 35.117986; 138.819428Pengelola JR CentralJalur■ Jalur Utama TokaidoLetak dari pangkal130.3 km dari TokyoJumlah peron2 peron sampingJumlah jalur2Penghubung antarmod...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (فبراير 2016) بطاقة الهوية البرازيليةمعلومات عامةنوع المستند معلومات شخصيةالبلد البرازيلتعديل - تعديل مصدري - تعديل و...
Ali Bongo OndimbaPresiden Gabon ke-6Masa jabatan16 Oktober 2009 – 30 Agustus 2023Perdana MenteriPaul Biyoghé MbaRaymond Ndong SimaDaniel Ona OndoEmmanuel Issoze-NgondetPendahuluRose Francine Rogombé (Penjabat)PenggantiBrice Oligui (Penjabat) Informasi pribadiLahir9 Februari 1959 (umur 64)Brazzaville, Persekutuan Afrika Prancis Khatulistiwa (sekarang Kongo-Brazzaville)Partai politikPDGSuami/istriSylvia ValentinAlma materUniversitas Pantheon-SorbonneSunting kotak info •...
This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Zhou Shengxian – news · newspapers · books · scholar · JSTOR (December 2010) (Learn how and when to remove this template message) In this Chinese ...
Wisconsin's 63rdState Assembly district From 2022 to 2031 From 2012 to 20212022 map defined in Johnson v. Wisconsin Elections Commission2011 map was defined in 2011 Wisc. Act 43Assemblymember Robin VosR–Rochestersince January 3, 2005 (18 years) Demographics81.8% White5.8% Black7.5% Hispanic2.0% Asian1.4% Native American0.1% Hawaiian/Pacific Islander1.2% OtherPopulation (2020) • Voting age59,534[1]47,779NotesSoutheast Wisc...
Latvian politician and journalist Nils UšakovsMember of the European ParliamentIncumbentAssumed office 2019Mayor of RigaIn office1 July 2009 – 4 April 2019DeputyAinārs Šlesers (2006–2010)Andris Ameriks (2010–2018)Oļegs Burovs (2018–2019)Vadims Baraņņiks (2019)[1]Preceded byJānis BirksSucceeded byDainis TurlaisMember of the SaeimaIn office2006 – 1 July 2009 Personal detailsBorn (1976-06-08) 8 June 1976 (age 47)Riga, Latvian SSR, Soviet UnionC...
American actor (1906-1988) John CarradineCarradine in a 1967 publicity photoBornRichmond Reed Carradine(1906-02-05)February 5, 1906New York City, U.S.DiedNovember 27, 1988(1988-11-27) (aged 82)Milan, ItalyOther namesPeter RichmondOccupationActorYears active1930–1988Spouses Ardanelle McCool Cosner (m. 1935; div. 1944) Sonia Sorel (m. 1944; div. 1956) Doris Rich &...
Merlin O'NeillBorn(1898-10-30)30 October 1898Gallia County, Ohio, U.S.Died1 March 1981(1981-03-01) (aged 82)Naval Air Station Patuxent River, Maryland, U.S.[1]Service/branchUnited States Coast GuardYears of service1921–1954RankAdmiral[Note 1]Commands heldCommandant of the Coast GuardBattles/warsWorld War IIAwardsLegion of Merit[2] Merlin O'Neill (30 October 1898 – 1 March 1981) served as the tenth Commandant of the United States Coast Guard from 1 January...
College softball team Texas Longhorns softball 2024 Texas Longhorns softball teamFounded1997UniversityUniversity of Texas at AustinAll-time Record1,078–472–5 (.695)Head coachMike White (6th season)ConferenceBig 12LocationAustin, TXHome stadiumRed & Charline McCombs Field (Capacity: 1,254)NicknameLonghornsColorsBurnt orange and white[1] NCAA WCWS runner-up2022NCAA WCWS appearances1998, 2003, 2005, 2006, 2013, 2022NCAA Super Regional appearances20...
Late medieval depiction of Hunald surrendering the stronghold of Loches to Pippin. In fact, Pippin took the stronghold but not Hunald. Hunald I, also spelled Hunold, Hunoald, Hunuald or Chunoald[a] (died 756), was the Duke of Aquitaine from 735 until 745. Although nominally he was an officer of the Merovingian kings of Francia, in practice Aquitaine was completely autonomous when he inherited it. His rule corresponds to the lowest point of the Merovingian monarchy, when the kingdom wa...
Shortest network connecting points Euclidean minimum spanning tree of 25 random points in the plane A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with...