V jaderném reaktoru se získává energie štěpením jader vhodných izotopů. Jako příklad lze uvést běžné palivo uran a jeho jednu z mnoha štěpných reakcí[3]:
Člen vyjadřuje množství energie uvolněné při jednom štěpení. Pro uran platí [4].
Z rovnice vyplývá, že z jednoho neutronu vznikají štěpením tři nové (průměrně 2,43[5] pro uran), které se mohou účastnit další štěpné reakce. Pokud by nedocházelo k regulaci počtu neutronů, rostlo by jejich množství exponenciálně[6]. Stejně tak by se uvolňovalo víc štěpné energie a docházelo by k enormnímu vývinu tepla. Takový stav je nežádoucí a může vést k havárii, proto je třeba neutrony absorbovat.
Interakce neutronu s prostředím
Když se neutron pohybuje prostředím, může interagovat dvojím způsobem[5]:
rozptyl: neutron se odrazí od terčového jádra
absorpce: neutron je pohlcen v terčovém jádře
Míru pravděpodobnosti obou jevů určuje mikrosopický účinný průřez pro rozptyl a pro absorpci . Každý izotop má určité hodnoty a , které vyjadřují vliv daného izotopu na tok neutronů. Absorbátory jsou tedy látky s vysokou hodnotu . Stejně tak jaderné palivo musí mít schopnost absorbovat neutron, aby mohlo dojít ke štěpení. Naproti tomu konstrukční materiály, pokud nemají zasahovat do neutronové bilance reaktoru, musí mít co nejmenší .
Když dojde k pohlcení neutronu v terčovém jádře, nastává jeden z následujících procesů[5]:
radiační záchyt : neutron je pohlcen v jádře a přebytečná energie je vyzářena jedním nebo více fotony gama záření
záchyt s vyzářením částice : neutron je pohlcen a dojde k odštěpení částice nebo protonu
štěpení : zásadní reakce pro jadernou energetiku, pohlcením neutronu vznikne nestabilní izotop, který se rozpadne a uvolní energii
O tom, jakým způsobem je neutron pohlcen, rozhoduje především izotop terčového jádra. Dále hraje roli energie neutronu a pravděpodobnost. Všechny jevy probíhají jen s určitou mírou pravděpodobnosti vyjádřenou odpovídajícími miskroskopickými průřezy.
Řízení jaderného reaktoru
Tepelný výkon reaktoru je úměrný počtu štěpení v aktivní zóně a tím i neutronovému toku. Regulací neutronového toku lze řídit výkon reaktoru. Veličina popisující odchylku od kritického stavu se nazývá reaktivita a značí se . Platí následující[6]:
: podkritický reaktor, výkon se snižuje a neutronový tok klesá
: kritický reaktor, výkon ani neutronový tok se nemění
: nadrkitický reaktor, výkon i neutronový tok rostou
Krátkodobá regulace
Při změně výkonu, odstavení anebo najetí reaktoru je potřeba měnit reaktivitu aktivní zóny. K tomu se v reaktorech používají regulační tyče vyrobené z absorbujícího materiálu. Zasunutím regulačních tyčí se vnáší záporná reaktivita a výkon klesá.
Dlouhodobá regulace
V rámci jedné palivové kampaně v reaktoru probíhají procesy, které snižují reaktivitu. Hlavně se uplatňuje:
vyhořívání paliva: úbytek štěpných jader v palivu a tím oslabování neutronového toku
zastruskování reaktoru: v reaktoru se množí štěpné produkty, z nichž některé absorbují neutrony
Aby reaktor mohl pracovat po celou dobu kampaně, musí se vysoká reaktivita čerstvého paliva kompenzovat zavedením záporné reaktivity opět pomocí absorbátoru (rozpustného nebo vyhořívajícího).
Regulační tyče bývají vyrobeny z oceli legované absorbátorem. Proto musí mít absorbátor kromě vysokého i vhodné metalurgické vlastnosti. Do regulačních tyčí se používá zpravidla bór nebo kadmium[9].
Rozpustné absorbátory
Pokud je reaktor chlazen nebo moderován vodou, je možné přidávat absorbátor ve formě vodného roztoku kyseliny nebo soli. Tlakovodní reaktory používají nejčastěji kyselinu boritou. Další používaná sloučenina je dusičnan gadolinitý. Ten se používá v reaktorech CANDU[10] pro havarijní odstavení, kdy je bohatý roztok absorbátoru vtlačován do prostoru kalandrie, aby zastavil štěpnou reakci.
Vyhořívající absorbátory
Na rozdíl od ostatních absorbátorů jsou vyhořívající absorbátory pevně spjaty s palivem a počítá se s jejich úbytkem v čase. Vzhledem k tomu, že je činnost vyhořívajících absorbátorů časově omezená, je důležité aby izotopy vznikající přeměnou absorbátoru měly malý a dál už neovlivňovaly neutronový tok. Tuto podmínku splňují všechny uvedené prvky vyjma dysprosia. Dysprosium se záchytem neutronů mění na ... , kde všechny vznikající izotopy mají výrazný [7].
Z hlediska trvanlivosti vyhořívajícího absorbátoru není vysoká hodnota optimální, protože dochází k velmi rychlému vyhoření.
Vyhořívající absorbátory umožňují obohacení paliva nad hodnotu . Vyšší obohacení prodlužuje palivovou kampaň a má pozitivní ekonomický dopad. Rozložení a koncentrace absorbátoru v palivovém souboru je zásadním prvkem designu vysoce obohacených paliv a je součástí know-how každého výrobce.
Typy vyhořívajících absorbátorů
Pomocí vyhořívajících absorbátorů lze upravovat neutronový tok v aktivní zóně a profilovat rozložení výkonu v reaktoru. Rozmístění absorbátorů a čerstvých palivových souborů je předmětem optimalizace při fyzikálním výpočtu palivové vsázky.
Integrální absorbátor je přímo součástí paliva a nachází se v palivových proutcích. Absorbátor se přidává ve formě prášku jako oxid gadolinitý, nebo diborid zirkonia [9]. Prášek může být buď zalisovaný do matrice paliva v palivové peletce, nebo naprášený na povrchu peletky ve formě tenkého filmu.
Výhodou integrálního absorbátoru je, že nenarušuje zavedený tvar palivového souboru ani jeho hydraulické vlastnosti. Integrální absorbátory lze používat jak v tlakovodních tak varných reaktorech.
Nevýhodou je snížení tepelné vodivosti, teploty tání a sklon k napuchání palivových peletek[9]. Peletky s vyhořívajícím absorbátorem se musí vyrábět v jiném závodě než běžné palivo, aby nedošlo k vzájemné kontaminaci. I velmi malá množství nechtěného absorbátoru mohou mít negativní vliv na průběh vyhořívání paliva.
Diskrétní vyhořívající absorbátor - BPRA (Burnable Poison Rod Assembly)
Diskrétní absorbátor se nachází v palivovém souboru ve formě absorpčních proutků. Konstrukce absorpčních proutků je podobná jako u palivových, lisované peletky absorbátoru jsou uloženy v zirkoniovém obalu a hermeticky utěsněny. Pro výrobu peletek se používá práškový karbid boru[9].
Výhodou diskrétních absorbátorů je, že nejsou pevnou součástí paliva a lze je využívat modulárně, tj. skládat palivové soubory různými způsoby podle potřeby.
Nevýhody diskrétních absorbátorů se vztahují k větší produkci radioaktivního odpadu a narušení hydraulického návrhu aktivní zóny. V neposlední řadě je problematické použití bóru, který se záchytem neutronu štěpí na lithium a helium. Plynný produkt štěpení potom tlakově namáhá zirkoniový obal proutku. To platí pro integrální i diskrétní absorbátory.
Diskrétní absorbátory se nepoužívají ve varných reaktorech[2].
↑TONCHEV, A. P.; GANGRSKY, Yu. P.; BELOV, A. G. Deformation on isomeric excitation of Eu isotopes in $(\ensuremath{\gamma},n)$ and $(n,\ensuremath{\gamma})$ reactions. Physical Review C. 1998-11-01, roč. 58, čís. 5, s. 2851–2857. Dostupné online [cit. 2022-12-15]. DOI10.1103/PhysRevC.58.2851.
↑ abcdPETERKA, Michal. Vyhořívající absorbátory pro uranový a thoriový cyklus VVER. dspace5.zcu.cz. 2017. Dostupné online [cit. 2022-12-12].
SKLENKA, Ľubomír; HERALTOVÁ, Lenka. Provozní reaktorová fyzika. 2. vyd. Praha: České vysoké učení technické v Praze, 2016. 196 s. ISBN978-80-01-05901-2.
FRÝBORT, Jan; HERALTOVÁ, Lenka; ŠTEFÁNIK, Milan. Úvod do reaktorové fyziky. 1. vyd. Praha: České vysoké učení technické v Praze, 2013. 120 s. ISBN978-80-01-05322-5.
LEWIS, Elmer E. Fundamentals of Nuclear Reactor Physics. [s.l.]: Elsevier Science Publishing, 2008. 312 s. ISBN978-0-12-370631-7.
HEZOUČKÝ, František; ŠTĚCH, Svatobor. Základy teorie normálních a abnormálních provozních režimů energetických bloků s tlakovodními reaktory. 1. vyd. Plzeň: Západočeská univerzita v Plzni, Univerzitní knihovna, 2015. 199 s. ISBN978-80-261-0548-0.