En matemàtiques, el terme grup simplèctic es pot referir a dues col·leccions de grups diferents, però fortament relacionats, denotats per Sp(2n, F) i Sp(n); aquest últim s'anomena també grup simplèctic compacte. Alguns autors prefereixen utilitzar notacions lleugerament diferents, que acostumen a diferir en un factor multiplicatiu 2. La notació d'aquest article és consistent amb la dimensió de les matrius utilitzades per representar els grups. En la classificació feta per Cartan sobre les àlgebres de Lie simples, l'àlgebra de Lie del grup complex Sp(2n, C) es denota per Cn, i Sp(n) és la forma real compacta de Sp(2n, C). Notem que, quan parlem del grup simplèctic (compacte), en realitat hom es refereix a la col·lecció de grups simplèctics (compactes) indexats per la seva dimensió n.
(anglès) The name "complex group" formerly advocated by me in allusion to line complexes, as these are defined by the vanishing of antisymmetric bilinear forms, has become more and more embarrassing through collision with the word "complex" in the connotation of complex number. I therefore propose to replace it by the corresponding Greek adjective "symplectic." Dickson calls the group the "Abelian linear group" in homage to Abel who first studied it.
(català) El nom "grup complex" que jo proposava en el passat en al·lusió als complexos de rectes, definides com l'anul·lació de formes bilineals antisimètriques, ha esdevingut més i més confús, degut a la col·lisió amb el terme "complex" en el sentit de nombre complex. Per tant, proposo substituir-lo pel corresponent adjectiu grec "simplèctic". Dickson anomena a aquest grup el "grup lineal abelià" en honor d'Abel, que va ser qui el va estudiar originalment.
El terme "simplèctic" és un calc de "complex", introduït per Weyl 1939, (notes al peu, p.165); anteriorment, hom es referia al "grup simplèctic" com el "grup complex de rectes". El terme "complex" prové del llatícom-plexus, que significa "trenat" (co- + plexus), mentre que "simplèctic" prové del grecsym-plektikos (συμπλεκτικός); en tots dos casos, el sufix prové de l'arrel indoeuropea *plek-.[1] Aquesta nomenclatura reflecteix les profundes connexions entre estructures complexes i simplèctiques.
L'àlgebra de Lie de Sp(2n, F) ve donada pel conjunt de matrius A2n × 2n (a entrades en F) que satisfan:
.
Quan n = 1, la condició simplèctica sobre una matriu se satisfà si i només si el determinant és 1, de tal manera que Sp(2, F) = SL(2, F). Per a n > 1, existeixen condicions addicionals; és a dir, Sp(2n, F) és un subgrup propi de SL(2n, F).
L'aplicació exponencial de l'àlgebra de Lie en el grup Sp(2n, R) no és suprajectiva. No obstant això, qualsevol element del grup es pot generar per la multiplicació de grup de dos elements.[4] En altres paraules,
.
Per a tot S de Sp(2n, R):
.
La matriu D és definida positiva i diagonal. El conjunt d'aquestes matrius Z forma un subgrup no compacte de Sp(2n, R), mentre que U(n) forma un subgrup compacte. Aquesta factorització es coneix com a descomposició d'Euler o de Bloch-Messiah.[5]
Per a Sp(2,R), el grup de matrius 2 × 2 amb determinant 1, les tres (0, 1)-matrius simplèctiques són:[7]
, i .
Relació amb la geometria simplèctica
La geometria simplèctica és l'estudi de les varietats simplèctiques. L'espai tangent a qualsevol punt d'una varietat simplèctica és un espai vectorial simplèctic.[8] Com s'ha vist anteriorment, les transformacions d'un espai vectorial simplèctic que preserven les estructures formen un grup, i aquest grup és Sp(2n, F), depenent de la dimensió de l'espai i del cos sobre el qual està definit.
Un espai vectorial simplèctic és, en si mateix, una varietat simplèctica. Una transformació sota una acció del grup simplèctic és, de certa manera, una versió linealitzada d'un simplectomorfisme, que és una transformació més general que preserva estructures sobre una varietat simplèctica.
Sp(n)
El grup simplèctic compacte Sp(n) s'acostuma a escriure com USp(2n), assenyalant el fet que és isomorf al grup de matrius simplèctiques unitàries, Sp(n) ≅ U(2n) ∩ Sp(2n, C).[9] Encara que la notació Sp(n) és més comuna (de fet, és la que s'utilitza en aquest article), pot generar confusió en el fet que la idea general del grup simplèctic –incloent les formes reals i complexes compactes– es pot representar com Sp(n).
Sp(n) és el subgrup de GL(n, H) (matrius quaterniòniques invertibles) que preserva la forma hermítica estàndard sobre Hn:
.
És a dir, Sp(n) és simplement el grup unitari quaterniònic, U(n, H). De fet, de vegades se l'anomena el grup hiperunitari. A més, Sp(1) és el grup de quaternions amb norma 1, equivalent a SU(2) i topològicament una 3-esferaS3.
Notem que Sp(n)no és un grup simplèctic en el sentit de la secció anterior: no preserva una forma antisimètrica (H-bilineal) no degenerada sobre Hn (de fet, l'única forma antisimètrica és la forma nul·la). En canvi, és isomorf a un subgrup de Sp(2n, C), i per tant sí que preserva una forma simplèctica complexa en un espai vectorial de dimensió doble de l'original. L'àlgebra de Lie de Sp(n) és una forma real de l'àlgebra de Lie simplèctica complexa sp(2n, C).
Tota àlgebra de Lie semisimple complexa té una forma real de descomposició i una forma real compacta. Hom diu que l'àlgebra de Lie és una complexificació de les dues formes.
L'àlgebra de Lie de Sp(2n, C) és semisimple, i es denota per . La seva forma real de descomposició és i la seva forma real compacta és . Aquestes dues àlgebres corresponen als grups de Lie Sp(2n, R) i Sp(n) respectivament.
Les àlgebres , que són les àlgebres de Lie de Sp(p, n − p), són la signatura indefinida equivalent a la forma compacta.
Els elements del grup Sp(2n, R) són, en cert sentit, transformacions canòniques sobre aquest vector, és a dir, preserven la forma de les equacions de Hamilton.[10] Si
són les noves coordenades, llavors es té:
on el punt representa la derivada respecte al temps, i
Considerem un sistema de n partícules amb un estat quàntic que conte informació sobre la seva posició i el seu moment. Aquestes coordenades són variables contínues i per tant l'espai de Hilbert, on resideix l'estat quàntic, té dimensió infinita. Aquesta característica fa que l'anàlisi de la situació sigui complicat. Un enfocament alternatiu és considerar l'evolució dels operadors posició i moment sota l'equació de Heisenberg en l'espai de fases.
Moltes situacions físiques només requereixen hamiltonians quadràtics, és a dir, hamiltonians de la forma
on K és una matriu simètrica real 2n × 2n. Resulta que això és una restricció útil, que permet reescriure l'equació de Heisenberg com
.
La solució a aquesta equació ha de predervar la relació de commutació canònica. Es pot demostrar que l'evolució temporal d'aquest sistema és equivalent a una acció del grup simplèctic real, Sp(2n, R), sobre l'espai de fases.
Referències
↑Gotay, Mark J.; Isenberg, James A. «The Symplectization of Science». Gazette des Mathématiciens, 54, 1992, pàg. 13. Arxivat de l'original el 13 de juny 2011 [Consulta: 28 abril 2016].
↑«Symplectic group». Encyclopedia of Mathematics. [Consulta: 13 desembre 2014].
Rossmann, Wulf. Lie Groups – An Introduction Through Linear Groups. Oxford Science Publications, 2002 (Oxford Graduate Texts in Mathematics). ISBN 0-19-859683-9.