পাই (ইংরেজি: Pi; প্রতীক π, প্রাচীন গ্রিক ভাষায় পি) একটি গুরুত্বপূর্ণ গাণিতিক ধ্রুবক, মোটামুটিভাবে এর মান প্রায় ৩.১৪১৫৯। ইউক্লিডীয় জ্যামিতিতে যেকোনো বৃত্তের পরিধি ও ব্যাসের অনুপাতকে এই ধ্রুবক দ্বারা প্রকাশ করা হয়। তবে একইভাবে এটি বৃত্তের ক্ষেত্রফলের সঙ্গে এর ব্যাসার্ধের বর্গের অনুপাতের সমান। গণিত, বিজ্ঞান ও প্রকৌশল বিদ্যার অনেক সূত্রে পাইয়ের দেখা পাওয়া যায়।
পাই একটি অমূলদ সংখ্যা, অর্থাৎ এটিকে দুইটি পূর্ণসংখ্যার ভগ্নাংশ আকারে প্রকাশ করা যায় না। অন্যভাবে বলা যায় এটিকে দশমিক আকারে সম্পূর্ণ প্রকাশ করা সম্ভব নয়। তার মানে আবার এই নয় যে, এটিতে কিছু অঙ্ক পর্যাবৃত্ত বা পৌনঃপুনিক আকারে আসে। বরং দশমিকের পরের অঙ্কগুলো দৈবভাবেই পাওয়া যায়। পাই যে কেবল অমূলদ তা নয়, এটি একই সঙ্গে একটি তুরীয় সংখ্যা, অর্থাৎ এটিকে কোনও বহুপদী সমীকরণের মূল হিসাবেও গণনা করা যায় না। গণিতের ইতিহাস জুড়ে, নির্ভুলভাবে পাইয়ের মান নির্ণয়ের ব্যাপক চেষ্টা করা হয়েছে। এমনকি, এই ধরনের প্রচেষ্টা কখনও কখনও সংস্কৃতির অংশও হয়েছে।
গ্রিক বর্ণ পাই (গ্রিক: π পি), গ্রিক শব্দ পেরিমেত্রোস্ (περίμετρος, অর্থ "পরিধি") থেকে এসেছে। সম্ভবত ১৭০৬ সালে উইলিয়াম জোনস প্রথম এটি ব্যবহার করেন। পরবর্তীতে লেওনার্ড অয়লার এটিকে জনপ্রিয় করেন। পাইকে গণিতে ব্যবহারের সময় ইংরেজিপাই (pie) হিসেবে উচ্চারণ করা হয় যদিও এর গ্রিক উচ্চারণ পি। এটিকে কোনো কোনো সময় বৃত্তীয় ধ্রুবক, আর্কিমিডিসের ধ্রুবক অথবা রুডলফের সংখ্যাও (জার্মান গণিতবিদের নাম হতে এসেছে, যার পাইয়ের মান নিয়ে কাজ পৃথিবীখ্যাত) বলা হয়।π=180°
π/2=90°
ত্রিকোণমিতিতে লাগে॥
যখন গ্রিক বর্ণ π পাওয়া যায় না, তখন পাই অথবা pi ব্যবহার করা হয়। এর ইংরেজি উচ্চারণ পাই হলেও গ্রিক উচ্চারণ কিছুটা ভিন্ন। আর এই ধ্রুবকের নাম π কারণ গ্রিক περιφέρεια (পেরিফেরেইয়া) এবং περίμετρος (পেরিমেত্রোস্) এর প্রথম বর্ণ এটি। [৫] এছাড়া এটি ইউনিকোড অক্ষর U+03C0।[৬]
সংজ্ঞা
ইউক্লিডিয় সমতলীয় জ্যামিতিতে, বৃত্তের পরিধি ও ব্যাসের অনুপাতকে π হিসেবে সংজ্ঞায়িত করা হয়।[৫]
লক্ষনীয় যে, পরিধি বা ব্যাস বৃত্তের মাপের ওপর নির্ভর করে না। যদি একটি বৃত্তের ব্যাস অন্য একটি বৃত্তের ব্যাসের দ্বিগুণ হয়, তাহলে সেই বৃত্তের পরিধি পরের বৃত্তের পরিধির দ্বিগুণ হবে। অর্থাৎ (পরিধি/ব্যাস) একই থাকবে। এই ঘটনাটি সমস্ত বৃত্তের সদৃশতার এর একটি ফলাফল।
অন্যভাবে বৃত্তের ক্ষেত্রফল ও যে বর্গক্ষেত্রের দৈর্ঘ্য বৃত্তের ব্যাসার্ধের সমান তার ক্ষেত্রফলের অনুপাত হিসাবেও প্রকাশ করা যায়। [৫][৭]
অমূলদত্ব ও তুরীয়ত্ব
ধ্রুবক π একটি অমূলদ সংখ্যা; মানে এইটিকে দুইটি পূর্ণসংখ্যার অনুপাত হিসেবে লেখা যাবে না। ১৭৬১ সালে জোহান হেনরিখ ল্যাম্বার্ট এটি প্রমাণ করেন।[৫] বিশ শতকে, এমন সা প্রমাণ বের করা হল যা বোঝার জন্য ক্যালকুলাস সম্পর্কে সাধারণ জ্ঞান থাকলেই চলে। এর মধ্যে আইভান নিভেন-এর প্রমাণটি সর্বজনবিদিত।[৮][৯] এর আগের আর একটি প্রমাণ করেন মেরি কার্টরাইট।[১০]
১৮৮২ সালে ফার্দিনান্ড ভন লিনডেম্যান প্রমাণ করেন যে পাই একটি তুরীয় সংখ্যা। এর মানে মূলদ সহগবিশিষ্ট এমন কোন বহুপদী সমীকরণ নেই, π যার মূল।[১১] তাহলে এর আর একটি বৈশিষ্ট্য দাড়ালো যে, কম্পাস ও রুলারের সাহায্যে পাই আছে এমন সমতুল কিছু আঁকা যাবে না। মানে হল কম্পাস ও রুলারের সাহায্যে একটি বৃত্তের ক্ষেত্রফলের সমান ক্ষেত্রফল বিশিষ্ট একটি বর্গক্ষেত্র কখনো আঁকা যাবে না। [১২]
সাংখ্যিক মান
দশমিকের পর ১০ হাজার ঘর পর্যন্ত পাই-এর মান নিচে দেওয়া হলো:
৩.১৪১৫৯২৬৫৩৫৮৯৭৯৩২৩৮৪৬২৬৪৩৩৮৩২৭৯৫০২৮৮৪১৯৭১৬৯৩৯৯৩৭৫১০৫৮২০৯৭৪৯৪৪৫৯২৩০৭৮১৬৪০৬২৮৬২০৮৯৯৮৬২৮০৩৪৮২৫৩৪২১১৭০৬৭৯৮২১৪৮০৮৬৫১৩২৮২৩০৬৬৪৭০৯৩৮৪৪৬০৯৫৫০৫৮২২৩১৭২৫৩৫৯৪০৮১২৮৪৮১১১৭৪৫০২৮৪১০২৭০১৯৩৮৫২১১০৫৫৫৯৬৪৪৬২২৯৪৮৯৫৪৯৩০৩৮১৯৬৪৪২৮৮১০৯৭৫৬৬৫৯৩৩৪৪৬১২৮৪৭৫৬৪৮২৩৩৭৮৬৭৮৩১৬৫২৭১২০১৯০৯১৪৫৬৪৮৫৬৬৯২৩৪৬০৩৪৮৬১০৪৫৪৩২৬৬৪৮২১৩৩৯৩৬০৭২৬০২৪৯১৪১২৭৩৭২৪৫৮৭০০৬৬০৬৩১৫৫৮৮১৭৪৮৮১৫২০৯২০৯৬২৮২৯২৫৪০৯১৭১৫৩৬৪৩৬৭৮৯২৫৯০৩৬০০১১৩৩০৫৩০৫৪৮৮২০৪৬৬৫২১৩৮৪১৪৬৯৫১৯৪১৫১১৬০৯৪৩৩০৫৭২৭০৩৬৫৭৫৯৫৯১৯৫৩০৯২১৮৬১১৭৩৮১৯৩২৬১১৭৯৩১০৫১১৮৫৪৮০৭৪৪৬২৩৭৯৯৬২৭৪৯৫৬৭৩৫১৮৮৫৭৫২৭২৪৮৯১২২৭৯৩৮১৮৩০১১৯৪৯১২৯৮৩৩৬৭৩৩৬২৪৪০৬৫৬৬৪৩০৮৬০২১৩৯৪৯৪৬৩৯৫২২৪৭৩৭১৯০৭০২১৭৯৮৬০৯৪৩৭০২৭৭০৫৩৯২১৭১৭৬২৯৩১৭৬৭৫২৩৮৪৬৭৪৮১৮৪৬৭৬৬৯৪০৫১৩২০০০৫৬৮১২৭১৪৫২৬৩৫৬০৮২৭৭৮৫৭৭১৩৪২৭৫৭৭৮৯৬০৯১৭৩৬৩৭১৭৮৭২১৪৬৮৪৪০৯০১২২৪৯৫৩৪৩০১৪৬৫৪৯৫৮৫৩৭১০৫০৭৯২২৭৯৬৮৯২৫৮৯২৩৫৪২০১৯৯৫৬১১২১২৯০২১৯৬০৮৬৪০৩৪৪১৮১৫৯৮১৩৬২৯৭৭৪৭৭১৩০৯৯৬০৫১৮৭০৭২১১৩৪৯৯৯৯৯৯৮৩৭২৯৭৮০৪৯৯৫১০৫৯৭৩১৭৩২৮১৬০৯৬৩১৮৫৯৫০২৪৪৫৯৪৫৫৩৪৬৯০৮৩০২৬৪২৫২২৩০৮২৫৩৩৪৪৬৮৫০৩৫২৬১৯৩১১৮৮১৭১০১০০০৩১৩৭৮৩৮৭৫২৮৮৬৫৮৭৫৩৩২০৮৩৮১৪২০৬১৭১৭৭৬৬৯১৪৭৩০৩৫৯৮২৫৩৪৯০৪২৮৭৫৫৪৬৮৭৩১১৫৯৫৬২৮৬৩৮৮২৩৫৩৭৮৭৫৯৩৭৫১৯৫৭৭৮১৮৫৭৭৮০৫৩২১৭১২২৬৮০৬৬১৩০০১৯২৭৮৭৬৬১১১৯৫৯০৯২১৬৪২০১৯৮৯৩৮০৯৫২৫৭২০১০৬৫৪৮৫৮৬৩২৭৮৮৬৫৯৩৬১৫৩৩৮১৮২৭৯৬৮২৩০৩০১৯৫২০৩৫৩০১৮৫২৯৬৮৯৯৫৭৭৩৬২২৫৯৯৪১৩৮৯১২৪৯৭২১৭৭৫২৮৩৪৭৯১৩১৫১৫৫৭৪৮৫৭২৪২৪৫৪১৫০৬৯৫৯৫০৮২৯৫৩৩১১৬৮৬১৭২৭৮৫৫৮৮৯০৭৫০৯৮৩৮১৭৫৪৬৩৭৪৬৪৯৩৯৩১৯২৫৫০৬০৪০০৯২৭৭০১৬৭১১৩৯০০৯৮৪৮৮২৪০১২৮৫৮৩৬১৬০৩৫৬৩৭০৭৬৬০১০৪৭১০১৮১৯৪২৯৫৫৫৯৬১৯৮৯৪৬৭৬৭৮৩৭৪৪৯৪৪৮২৫৫৩৭৯৭৭৪৭২৬৮৪৭১০৪০৪৭৫৩৪৬৪৬২০৮০৪৬৬৮৪২৫৯০৬৯৪৯১২৯৩৩১৩৬৭৭০২৮৯৮৯১৫২১০৪৭৫২১৬২০৫৬৯৬৬০২৪০৫৮০৩৮১৫০১৯৩৫১১২৫৩৩৮২৪৩০০৩৫৫৮৭৬৪০২৪৭৪৯৬৪৭৩২৬৩৯১৪১৯৯২৭২৬০৪২৬৯৯২২৭৯৬৭৮২৩৫৪৭৮১৬৩৬০০৯৩৪১৭২১৬৪১২১৯৯২৪৫৮৬৩১৫০৩০২৮৬১৮২৯৭৪৫৫৫৭০৬৭৪৯৮৩৮৫০৫৪৯৪৫৮৮৫৮৬৯২৬৯৯৫৬৯০৯২৭২১০৭৯৭৫০৯৩০২৯৫৫৩২১১৬৫৩৪৪৯৮৭২০২৭৫৫৯৬০২৩৬৪৮০৬৬৫৪৯৯১১৯৮৮১৮৩৪৭৯৭৭৫৩৫৬৬৩৬৯৮০৭৪২৬৫৪২৫২৭৮৬২৫৫১৮১৮৪১৭৫৭৪৬৭২৮৯০৯৭৭৭৭২৭৯৩৮০০০৮১৬৪৭০৬০০১৬১৪৫২৪৯১৯২১৭৩২১৭২১৪৭৭২৩৫০১৪১৪৪১৯৭৩৫৬৮৫৪৮১৬১৩৬১১৫৭৩৫২৫৫২১৩৩৪৭৫৭৪১৮৪৯৪৬৮৪৩৮৫২৩৩২৩৯০৭৩৯৪১৪৩৩৩৪৫৪৭৭৬২৪১৬৮৬২৫১৮৯৮৩৫৬৯৪৮৫৫৬২০৯৯২১৯২২২১৮৪২৭২৫৫০২৫৪২৫৬৮৮৭৬৭১৭৯০৪৯৪৬০১৬৫৩৪৬৬৮০৪৯৮৮৬২৭২৩২৭৯১৭৮৬০৮৫৭৮৪৩৮৩৮২৭৯৬৭৯৭৬৬৮১৪৫৪১০০৯৫৩৮৮৩৭৮৬৩৬০৯৫০৬৮০০৬৪২২৫১২৫২০৫১১৭৩৯২৯৮৪৮৯৬০৮৪১২৮৪৮৮৬২৬৯৪৫৬০৪২৪১৯৬৫২৮৫০২২২১০৬৬১১৮৬৩০৬৭৪৪২৭৮৬২২০৩৯১৯৪৯৪৫০৪৭১২৩৭১৩৭৮৬৯৬০৯৫৬৩৬৪৩৭১৯১৭২৮৭৪৬৭৭৬৪৬৫৭৫৭৩৯৬২৪১৩৮৯০৮৬৫৮৩২৬৪৫৯৯৫৮১৩৩৯০৪৭৮০২৭৫৯০০৯৯৪৬৫৭৬৪০৭৮৯৫১২৬৯৪৬৮৩৯৮৩৫২৫৯৫৭০৯৮২৫৮২২৬২০৫২২৪৮৯৪০৭৭২৬৭১৯৪৭৮২৬৮৪৮২৬০১৪৭৬৯৯০৯০২৬৪০১৩৬৩৯৪৪৩৭৪৫৫৩০৫০৬৮২০৩৪৯৬২৫২৪৫১৭৪৯৩৯৯৬৫১৪৩১৪২৯৮০৯১৯০৬৫৯২৫০৯৩৭২২১৬৯৬৪৬১৫১৫৭০৯৮৫৮৩৮৭৪১০৫৯৭৮৮৫৯৫৯৭৭২৯৭৫৪৯৮৯৩০১৬১৭৫৩৯২৮৪৬৮১৩৮২৬৮৬৮৩৮৬৮৯৪২৭৭৪১৫৫৯৯১৮৫৫৯২৫২৪৫৯৫৩৯৫৯৪৩১০৪৯৯৭২৫২৪৬৮০৮৪৫৯৮৭২৭৩৬৪৪৬৯৫৮৪৮৬৫৩৮৩৬৭৩৬২২২৬২৬০৯৯১২৪৬০৮০৫১২৪৩৮৮৪৩৯০৪৫১২৪৪১৩৬৫৪৯৭৬২৭৮০৭৯৭৭১৫৬৯১৪৩৫৯৯৭৭০০১২৯৬১৬০৮৯৪৪১৬৯৪৮৬৮৫৫৫৮৪৮৪০৬৩৫৩৪২২০৭২২২৫৮২৮৪৮৮৬৪৮১৫৮৪৫৬০২৮৫০৬০১৬৮৪২৭৩৯৪৫২২৬৭৪৬৭৬৭৮৮৯৫২৫২১৩৮৫২২৫৪৯৯৫৪৬৬৬৭২৭৮২৩৯৮৬৪৫৬৫৯৬১১৬৩৫৪৮৮৬২৩০৫৭৭৪৫৬৪৯৮০৩৫৫৯৩৬৩৪৫৬৮১৭৪৩২৪১১২৫১৫০৭৬০৬৯৪৭৯৪৫১০৯৬৫৯৬০৯৪০২৫২২৮৮৭৯৭১০৮৯৩১৪৫৬৬৯১৩৬৮৬৭২২৮৭৪৮৯৪০৫৬০১০১৫০৩৩০৮৬১৭৯২৮৬৮০৯২০৮৭৪৭৬০৯১৭৮২৪৯৩৮৫৮৯০০৯৭১৪৯০৯৬৭৫৯৮৫২৬১৩৬৫৫৪৯৭৮১৮৯৩১২৯৭৮৪৮২১৬৮২৯৯৮৯৪৮৭২২৬৫৮৮০৪৮৫৭৫৬৪০১৪২৭০৪৭৭৫৫৫১৩২৩৭৯৬৪১৪৫১৫২৩৭৪৬২৩৪৩৬৪৫৪২৮৫৮৪৪৪৭৯৫২৬৫৮৬৭৮২১০৫১১৪১৩৫৪৭৩৫৭৩৯৫২৩১১৩৪২৭১৬৬১০২১৩৫৯৬৯৫৩৬২৩১৪৪২৯৫২৪৮৪৯৩৭১৮৭১১০১৪৫৭৬৫৪০৩৫৯০২৭৯৯৩৪৪০৩৭৪২০০৭৩১০৫৭৮৫৩৯০৬২১৯৮৩৮৭৪৪৭৮০৮৪৭৮৪৮৯৬৮৩৩২১৪৪৫৭১৩৮৬৮৭৫১৯৪৩৫০৬৪৩০২১৮৪৫৩১৯১০৪৮৪৮১০০৫৩৭০৬১৪৬৮০৬৭৪৯১৯২৭৮১৯১১৯৭৯৩৯৯৫২০৬১৪১৯৬৬৩৪২৮৭৫৪৪৪০৬৪৩৭৪৫১২৩৭১৮১৯২১৭৯৯৯৮৩৯১০১৫৯১৯৫৬১৮১৪৬৭৫১৪২৬৯১২৩৯৭৪৮৯৪০৯০৭১৮৬৪৯৪২৩১৯৬১৫৬৭৯৪৫২০৮০৯৫১৪৬৫৫০২২৫২৩১৬০৩৮৮১৯৩০১৪২০৯৩৭৬২১৩৭৮৫৫৯৫৬৬৩৮৯৩৭৭৮৭০৮৩০৩৯০৬৯৭৯২০৭৭৩৪৬৭২২১৮২৫৬২৫৯৯৬৬১৫০১৪২১৫০৩০৬৮০৩৮৪৪৭৭৩৪৫৪৯২০২৬০৫৪১৪৬৬৫৯২৫২০১৪৯৭৪৪২৮৫০৭৩২৫১৮৬৬৬০০২১৩২৪৩৪০৮৮১৯০৭১০৪৮৬৩৩১৭৩৪৬৪৯৬৫১৪৫৩৯০৫৭৯৬২৬৮৫৬১০০৫৫০৮১০৬৬৫৮৭৯৬৯৯৮১৬৩৫৭৪৭৩৬৩৮৪০৫২৫৭১৪৫৯১০২৮৯৭০৬৪১৪০১১০৯৭১২০৬২৮০৪৩৯০৩৯৭৫৯৫১৫৬৭৭১৫৭৭০০৪২০৩৩৭৮৬৯৯৩৬০০৭২৩০৫৫৮৭৬৩১৭৬৩৫৯৪২১৮৭৩১২৫১৪৭১২০৫৩২৯২৮১৯১৮২৬১৮৬১২৫৮৬৭৩২১৫৭৯১৯৮৪১৪৮৪৮৮২৯১৬৪৪৭০৬০৯৫৭৫২৭০৬৯৫৭২২০৯১৭৫৬৭১১৬৭২২৯১০৯৮১৬৯০৯১৫২৮০১৭৩৫০৬৭১২৭৪৮৫৮৩২২২৮৭১৮৩৫২০৯৩৫৩৯৬৫৭২৫১২১০৮৩৫৭৯১৫১৩৬৯৮৮২০৯১৪৪৪২১০০৬৭৫১০৩৩৪৬৭১১০৩১৪১২৬৭১১১৩৬৯৯০৮৬৫৮৫১৬৩৯৮৩১৫০১৯৭০১৬৫১৫১১৬৮৫১৭১৪৩৭৬৫৭৬১৮৩৫১৫৫৬৫০৮৮৪৯০৯৯৮৯৮৫৯৯৮২৩৮৭৩৪৫৫২৮৩৩১৬৩৫৫০৭৬৪৭৯১৮৫৩৫৮৯৩২২৬১৮৫৪৮৯৬৩২১৩২৯৩৩০৮৯৮৫৭০৬৪২০৪৬৭৫২৫৯০৭০৯১৫৪৮১৪১৬৫৪৯৮৫৯৪৬১৬৩৭১৮০২৭০৯৮১৯৯৪৩০৯৯২৪৪৮৮৯৫৭৫৭১২৮২৮৯০৫৯২৩২৩৩২৬০৯৭২৯৯৭১২০৮৪৪৩৩৫৭৩২৬৫৪৮৯৩৮২৩৯১১৯৩২৫৯৭৪৬৩৬৬৭৩০৫৮৩৬০৪১৪২৮১৩৮৮৩০৩২০৩৮২৪৯০৩৭৫৮৯৮৫২৪৩৭৪৪১৭০২৯১৩২৭৬৫৬১৮০৯৩৭৭৩৪৪৪০৩০৭০৭৪৬৯২১১২০১৯১৩০২০৩৩০৩৮০১৯৭৬২১১০১১০০৪৪৯২৯৩২১৫১৬০৮৪২৪৪৪৮৫৯৬৩৭৬৬৯৮৩৮৯৫২২৮৬৮৪৭৮৩১২৩৫৫২৬৫৮২১৩১৪৪৯৫৭৬৮৫৭২৬২৪৩৩৪৪১৮৯৩০৩৯৬৮৬৪২৬২৪৩৪১০৭৭৩২২৬৯৭৮০২৮০৭৩১৮৯১৫৪৪১১০১০৪৪৬৮২৩২৫২৭১৬২০১০৫২৬৫২২৭২১১১৬৬০৩৯৬৬৬৫৫৭৩০৯২৫৪৭১১০৫৫৭৮৫৩৭৬৩৪৬৬৮২০৬৫৩১০৯৮৯৬৫২৬৯১৮৬২০৫৬৪৭৬৯৩১২৫৭০৫৮৬৩৫৬৬২০১৮৫৫৮১০০৭২৯৩৬০৬৫৯৮৭৬৪৮৬১১৭৯১০৪৫৩৩৪৮৮৫০৩৪৬১১৩৬৫৭৬৮৬৭৫৩২৪৯৪৪১৬৬৮০৩৯৬২৬৫৭৯৭৮৭৭১৮৫৫৬০৮৪৫৫২৯৬৫৪১২৬৬৫৪০৮৫৩০৬১৪৩৪৪৪৩১৮৫৮৬৭৬৯৭৫১৪৫৬৬১৪০৬৮০০৭০০২৩৭৮৭৭৬৫৯১৩৪৪০১৭১২৭৪৯৪৭০৪২০৫৬২২৩০৫৩৮৯৯৪৫৬১৩১৪০৭১১২৭০০০৪০৭৮৫৪৭৩৩২৬৯৯৩৯০৮১৪৫৪৬৬৪৬৪৫৮৮০৭৯৭২৭০৮২৬৬৮৩০৬৩৪৩২৮৫৮৭৮৫৬৯৮৩০৫২৩৫৮০৮৯৩৩০৬৫৭৫৭৪০৬৭৯৫৪৫৭১৬৩৭৭৫২৫৪২০২১১৪৯৫৫৭৬১৫৮১৪০০২৫০১২৬২২৮৫৯৪১৩০২১৬৪৭১৫৫০৯৭৯২৫৯২৩০৯৯০৭৯৬৫৪৭৩৭৬১২৫৫১৭৬৫৬৭৫১৩৫৭৫১৭৮২৯৬৬৬৪৫৪৭৭৯১৭৪৫০১১২৯৯৬১৪৮৯০৩০৪৬৩৯৯৪৭১৩২৯৬২১০৭৩৪০৪৩৭৫১৮৯৫৭৩৫৯৬১৪৫৮৯০১৯৩৮৯৭১৩১১১৭৯০৪২৯৭৮২৮৫৬৪৭৫০৩২০৩১৯৮৬৯১৫১৪০২৮৭০৮০৮৫৯৯০৪৮০১০৯৪১২১৪৭২২১৩১৭৯৪৭৬৪৭৭৭২৬২২৪১৪২৫৪৮৫৪৫৪০৩৩২১৫৭১৮৫৩০৬১৪২২৮৮১৩৭৫৮৫০৪৩০৬৩৩২১৭৫১৮২৯৭৯৮৬৬২২৩৭১৭২১৯১৬০৭৭১৬৬৯২৫৪৭৪৮৭৩৮৯৮৬৬৫৪৯৪৯৪৫০১১৪৬৫৪০৬২৮৪৩৩৬৬৩৯৩৭৯০০৩৯৭৬৯২৬৫৬৭২১৪৬৩৮৫৩০৬৭৩৬০৯৬৫৭১২০৯১৮০৭৬৩৮৩২৭১৬৬৪১৬২৭৪৮৮৮৮০০৭৮৬৯২৫৬০২৯০২২৮৪৭২১০৪০৩১৭২১১৮৬০৮২০৪১৯০০০৪২২৯৬৬১৭১১৯৬৩৭৭৯২১৩৩৭৫৭৫১১৪৯৫৯৫০১৫৬৬০৪৯৬৩১৮৬২৯৪৭২৬৫৪৭৩৬৪২৫২৩০৮১৭৭০৩৬৭৫১৫৯০৬৭৩৫০২৩৫০৭২৮৩৫৪০৫৬৭০৪০৩৮৬৭৪৩৫১৩৬২২২২৪৭৭১৫৮৯১৫০৪৯৫৩০৯৮৪৪৪৮৯৩৩৩০৯৬৩৪০৮৭৮০৭৬৯৩২৫৯৯৩৯৭৮০৫৪১৯৩৪১৪৪৭৩৭৭৪৪১৮৪২৬৩১২৯৮৬০৮০৯৯৮৮৮৬৮৭৪১৩২৬০৪৭২১৫৬৯৫১৬২৩৯৬৫৮৬৪৫৭৩০২১৬৩১৫৯৮১৯৩১৯৫১৬৭৩৫৩৮১২৯৭৪১৬৭৭২৯৪৭৮৬৭২৪২২৯২৪৬৫৪৩৬৬৮০০৯৮০৬৭৬৯২৮২৩৮২৮০৬৮৯৯৬৪০০৪৮২৪৩৫৪০৩৭০১৪১৬৩১৪৯৬৫৮৯৭৯৪০৯২৪৩২৩৭৮৯৬৯০৭০৬৯৭৭৯৪২২৩৬২৫০৮২২১৬৮৮৯৫৭৩৮৩৭৯৮৬২৩০০১৫৯৩৭৭৬৪৭১৬৫১২২৮৯৩৫৭৮৬০১৫৮৮১৬১৭৫৫৭৮২৯৭৩৫২৩৩৪৪৬০৪২৮১৫১২৬২৭২০৩৭৩৪৩১৪৬৫৩১৯৭৭৭৭৪১৬০৩১৯৯০৬৬৫৫৪১৮৭৬৩৯৭৯২৯৩৩৪৪১৯৫২১৫৪১৩৪১৮৯৯৪৮৫৪৪৪৭৩৪৫৬৭৩৮৩১৬২৪৯৯৩৪১৯১৩১৮১৪৮০৯২৭৭৭৭১০৩৮৬৩৮৭৭৩৪৩১৭৭২০৭৫৪৫৬৫৪৫৩২২০৭৭৭০৯২১২০১৯০৫১৬৬০৯৬২৮০৪৯০৯২৬৩৬০১৯৭৫৯৮৮২৮১৬১৩৩২৩১৬৬৬৩৬৫২৮৬১৯৩২৬৬৮৬৩৩৬০৬২৭৩৫৬৭৬৩০৩৫৪৪৭৭৬২৮০৩৫০৪৫০৭৭৭২৩৫৫৪৭১০৫৮৫৯৫৪৮৭০২৭৯০৮১৪৩৫৬২৪০১৪৫১৭১৮০৬২৪৬৪৩৬২৬৭৯৪৫৬১২৭৫৩১৮১৩৪০৭৮৩৩০৩৩৬২৫৪২৩২৭৮৩৯৪৪৯৭৫৩৮২৪৩৭২০৫৮৩৫৩১১৪৭৭১১৯৯২৬০৬৩৮১৩৩৪৬৭৭৬৮৭৯৬৯৫৯৭০৩০৯৮৩৩৯১৩০৭৭১০৯৮৭০৪০৮৫৯১৩৩৭৪৬৪১৪৪২৮২২৭৭২৬৩৪৬৫৯৪৭০৪৭৪৫৮৭৮৪৭৭৮৭২০১৯২৭৭১৫২৮০৭৩১৭৬৭৯০৭৭০৭১৫৭২১৩৪৪৪৭৩০৬০৫৭০০৭৩৩৪৯২৪৩৬৯৩১১৩৮৩৫০৪৯৩১৬৩১২৮৪০৪২৫১২১৯২৫৬৫১৭৯৮০৬৯৪১১৩৫২৮০১৩১৪৭০১৩০৪৭৮১৬৪৩৭৮৮৫১৮৫২৯০৯২৮৫৪৫২০১১৬৫৮৩৯৩৪১৯৬৫৬২১৩৪৯১৪৩৪১৫৯৫৬২৫৮৬৫৮৬৫৫৭০৫৫২৬৯০৪৯৬৫২০৯৮৫৮০৩৩৮৫০৭২২৪২৬৪৮২৯৩৯৭২৮৫৮৪৭৮৩১৬৩০৫৭৭৭৭৫৬০৬৮৮৮৭৬৪৪৬২৪৮২৪৬৮৫৭৯২৬০৩৯৫৩৫২৭৭৩৪৮০৩০৪৮০২৯০০৫৮৭৬০৭৫৮২৫১০৪৭৪৭০৯১৬৪৩৯৬১৩৬২৬৭৬০৪৪৯২৫৬২৭৪২০৪২০৮৩২০৮৫৬৬১১৯০৬২৫৪৫৪৩৩৭২১৩১৫৩৫৯৫৮৪৫০৬৮৭৭২৪৬০২৯০১৬১৮৭৬৬৭৯৫২৪০৬১৬৩৪২৫২২৫৭৭১৯৫৪২৯১৬২৯৯১৯৩০৬৪৫৫৩৭৭৯৯১৪০৩৭৩৪০৪৩২৮৭৫২৬২৮৮৮৯৬৩৯৯৫৮৭৯৪৭৫৭২৯১৭৪৬৪২৬৩৫৭৪৫৫২৫৪০৭৯০৯১৪৫১৩৫৭১১১৩৬৯৪১০৯১১৯৩৯৩২৫১৯১০৭৬০২০৮২৫২০২৬১৮৭৯৮৫৩১৮৮
দশমিকের পর ট্রিলিয়নের (১ এর পর ১২টি শূন্য, ১০১২) বেশি ঘর পর্যন্ত পাই-এর মান বের করা হলেও সাধারণ কাজে দশমিকের পর ১২ ঘরের বেশি মান তেমন একটা প্রয়োজন হয় না। সারা দুনিয়ায় সবচেয়ে বড় বৃত্তের পরিধি গণনার জন্য ৩৯ ঘরের মান ব্যবহার করলে তার সূক্ষতা হবে হাইড্রোজেন পরমাণুর সমান।[১৩]
π নিজেই একটি অসীম দশমিক বর্ধন কারণ π একটি অমূলদ সংখ্যা, এর দশমিক বর্ধন কখনো শেষ হয় না বা পুনরাবৃত্তি করে না। এই অসীম ধারাটি গণিতজ্ঞ ও সাধরন মানুষকে যুগে যুগে চমৎকৃত করেছে। তাই সবাই চেষ্টা করেছে এর সঠিক মান বের করার জন্য। কেবল যে বিশ্লেষণী কাজ হয়েছ তা নয়, এই কাজে এমনকি সুপার কম্পিউটারও ব্যবহার করা হয়েছে। সুপার কম্পিউটার ব্যবহার করে দশমিকের পর লক্ষ কোটি ঘর পর্যন্ত হিসাব করে কোনো পুনরাবৃত্তি পাওয়া যায় নি।[১৪]
পাই গণনা
একটি বড় বৃত্ত একে তার ব্যাস ও পরিধি মেপে π-এর মান গণনা করা যায়। এছাড়া আর একটি পদ্ধতি রয়েছে যেখানে ও বৃত্ত আর বহুভূজ আঁকতে হয়। এটি আর্কিমিডিসের পদ্ধতি। একটি বৃত্তের মধ্যে সুষম বহুভূজ আঁকতে হবে। বাহুর সংখ্যা যতো বেশি হবে বহুভূজের ক্ষেত্রফল বৃত্তের ক্ষেত্রফলের ততো কাছাকাছি হবে। তারপর বৃত্তের ব্যাসার্ধের সঙ্গে এর ক্ষেত্রফলের সম্পর্ক থেকে π গণনা করা যাবে।[১৫] ক্ষেত্রফলের সাথে সম্পর্কটি হলো বৃত্তের ক্ষেত্রফল A হলো ব্যাসার্ধের বর্গ গুণ পাই।
বিশুদ্ধ গাণিতিক পদ্ধতিতেও π গণনা করা যায়। তবে π গণনার বেশিরভাগ সূত্র বোঝার জন্য ত্রিকোণমিতি ও ক্যালকুলাস -এর ধারণা থাকা দরকার। আবার কোনো কোনোটি বেশ সহজ। যেমন গ্রেগরি-লিবনিৎজ ধারা। [১৬]
.
এই ধারাটি লিখতে এ গণনা করতে সহজ হলেও এই থেকে এর মান কেন পাওয়া যাবে তা তাৎক্ষণিকভাবে বোধগম্য হওয়া কঠিন। এটি এতো ধীরে কেন্দ্রীভূত হয় যে, এর ৩০০টি পদ নিয়েও দশমিকের পর দুইঘর মান সঠিকভাবে পাওযা যায় না।[১৭]
ইতিহাস
π এর ইতিহাস আর গণিতের উন্নতি সাধনের সামগ্রিক ইতিহাস প্রায় সমান্তরাল।[১৮] বিভিন্ন লেখক পাই-এর ইতিহাসকে তিনভাগে ভাগ করেছেন – জ্যামিতি প্রয়োগের প্রাচীনকালের জ্যামিতি যুগ, সপ্তদশ শতকে ইউরোপে ক্যালকুলাস আবিস্কারের পর সনাতনি যুগ এবং কম্পিউটারের আবির্ভাবের পর কম্পিউটার যুগ।[১৯]
জ্যামিতির যুগ
পরিধি ও ব্যাসের অনুপাত যে সব বৃত্তের জন্য সমান ও ৩ এর চাইতে বড় - এই সত্য প্রাচীন মিশরীয়, ব্যাবিলনীয়, ভারতীয় ও গ্রিক জ্যামিতজ্ঞদের জানা ছিল। সবচেয়ে পুরনো গণনার কথা জনা যাচ্ছে খ্রিস্টপূর্ব ১৯০০ সালে। এর মধ্যে রয়েছে ব্যাবিলনীয় (২৫/৮) ও মিশরীয়দের (২৫৬/৮১) মান প্রকৃত মানের ১ শতাংশের মধ্যে।[৫] ভারতীয় পুস্তক শতপথ ব্রাহ্মণে π -এর মান ৩৩৯/১০৮≈ ৩..৩১৯ হিসাবে উল্লেখ করা হয়েছে। খ্রিস্টপূর্ব ৬০০ সালে প্রকাশিত বুকস অব কিং-এ π -এর মান ৩ হিসাবে প্রস্তাব করা হয়েছে।[২০][২১]
আর্কিমিডিস (খ্রিস্টপূর্ব ২৮৭-২১২) প্রথম rigorously পাই-এর মান গণনা করেন। তিনি প্রথমে পাই মানের সীমা বের করলেন। বৃত্তের ভিতরে সুষম বহুভূজের পরিসীমা বের করে তিনি এই কাজটি সমাধা করেন।[২১]
৯৬ বাহু বিশিষ্ট বহুভূজ একে তিনি দেখালেন ২২৩/৭১< π < ২২/৭[২১] এই দুই-এর গড় নিয়ে পাই-এর একটি মান পাওয়া গেল ৩.১৪১৯। পরবর্তী শতকগুলোতে ভারত ও চীনে বেশ কাজ হয়েছ। মোটামুটি ৪৮০ সালে চীনা গণিতজ্ঞ জু চোঙ্গজি পাই এর আসন্ন মান বের করলেন ৩৫৫/১১৩ এবং প্রমাণ করলেন ৩.১৪১৫৯২৬ < π < ৩.১৪১৫৯২৭, যা কিনা পরবর্তী ৯০০ বছর পর্যন্ত সবচেয়ে সঠিক হিসাবে বিবেচিত হয়েছে।
সনাতনী যুগ
দ্বিতীয় সহস্রাব্দ শুরুর আগে পাই এর মান দশমিকের পর ১০ ঘর পর্যন্ত জানা ছিল। পাই গবেষণার পরবর্তী উল্লেখযোগ্য অগ্রগতি ঘটে ক্যালকুলাস, বিশেষ করে অসীম ধারা আবিষ্কারের পর থেকে। অসীম ধারা থেকে বোঝা গেল বেশি বেশি পদ যোগ করে পাইর মান অধিকতর সূক্ষতায় বের করা যাবে। ১৪০০ সালের দিকে সংগমাগ্রামার মাধব প্রথম সেরকম ধারা খুঁজে পান।
এই ধারাটি এখন গ্রেগরি-লিবনিৎজ ধারা নামে পরিচিত কারণ সপ্তদশ শতকে এটি তাদের দ্বারা পুনঃ আবিস্কৃত হয়। দুঃখের বিষয় এর কেন্দ্রীভূততার হার খুবই ধীর। এমনকি আর্কিমিডিসের সমান সূক্ষতার জন্য প্রায় ৪০০০ পদের যোগফল নেওয়া দরকার হয়ে পড়ে। যাহোক সিরিজটিকে নিচের ধারায় রূপান্তরিত করে
মাধব π = ৩.১৪১৫৯২৬৫৩৫৯ বের করেন যা ১১ ঘর পর্যন্ত সঠিক। ১৪২৪ সালে ইরানের জ্যোতির্বিদ জামশিদ আল-কাশি ১৬ ঘর পর্যন্ত π-এর মান বের করলে মাধবের রেকর্ড ভেঙ্গে যায়।
জার্মান গণিতজ্ঞ লুডলফ ভন চিউলেন আর্কিমিডিসের পর প্রথম ইউরোপীয় হিসাবে পাই গণনায় শরিক হোন। তিনি জ্যামিতিক পদ্ধতিতে দশমিকের পর ৩২ ঘর পর্যন্ত সঠিকভাবে পাই গণনা করেন। এই গণনা করে তিনি এত বেশি আনন্দিত ও গর্বিত হোন যে, মৃত্যুর পর তার সমাধিতে সেটি উৎকীর্ণ করা হয়।
এই সময়ে ইউরোপে ক্যালকুলাস, অসীম ধারার সমাধান ও জ্যামিতিক গুণন পদ্ধতির আবির্ভাব হয়। সেরকম প্রথম হলো ভিয়েতের সূত্র, যা তিনি ১৫৯৩ সালে আবিষ্কার করেন॥
মাচিন-তুল্য সূত্র সমূহ কম্পিউটার আগমনের আগ পর্যন্ত পাই গণনায় সবচেয়ে সফল ছিল। সেরকম অনেক সূত্র তখন প্রচলিত ছিল। এমন একটি সূত্রের সাহায্যে ১৮৪৪ সালে জাকারিয়াস ডাসে মুখে মেখে ২০০ ঘর পর্যন্ত গণনা করে সবাইকে তাক লাগিয়ে দেন।
১৯ শতকে সবচেয়ে ভালো সাফল্য উইলিয়াম শাঙ্ক-এর. ১৫ বছরে তিনি দশমিকের পর ৭০৭ ঘর পর্যন্ত গণনা করেন। তবে পরে দেখা যায় সামান্য ভুলের জন্য ৫২৭ ঘর পর্যন্ত তার হিসাব সঠিক ছিল (এই ধরনের ভুল এড়ানোর জন্য এখন কমপক্ষে দুইভাবে গণনা করে দেখা হয় সঠিক আছে কি না)।
এর প্রকৃত মান বের করেন যা কিনা π২/৬। তিনি π ও মৌলিক সংখ্যার মধ্যে ভালো সম্পর্ক খুঁজে পান। অয়েলার ও লিজেঁদর দুইজনই ধারণা করেছিলেন যে π একটি সীমাতিক্রান্ত সংখ্যা হতে পারে। বস্তুত ১৮৮২ সালে ফার্দিনান্দ ভন লিন্ডারম্যান এটি প্রমাণ করেণ।
উইলিয়াম জোনস তার এ নিউ ইন্ট্রোডাকশন টু ম্যাথম্যাটিকস (A New Introduction to Mathematics) বইতে প্রথম এই ধ্রুবক প্রকাশে π প্রতীক ব্যবহার করেন। তবে এটি জনপ্রিয় হয় ১৭৩৭ সালে অয়েলার যখন এটি গ্রহণ করেন।
আধুনিক ডিজিটাল যুগ
বিশ শতকে কম্পিউটারের উদ্ভাবনের পর π গণনায় নতুন জোয়ার আসে। জন ভন নিউম্যান ১৯৪৯ সালে ২০৩৭ ঘর পর্যন্ত গণনা করেন। এনিয়াক কম্পিউটারে এই গণনার জন্য মাত্র ৭০ ঘণ্টা সময় লেগেছিল।
বিশ শতকের শুরুতে ভারতীয় গণিতবিদ শ্রীনিবাস রামানুজন π গণনার বেশ কটি নতুন সূত্র বের করেন।[২২] তার একটি বিখ্যাত সিরিজ হলো
যা কি না প্রতি পদে ১৪ ঘর করে মান বের করতে পারে। [২২]
পাইয়ের মান মুখস্থ করা
কম্পিউটারে পাই গণনার বহু পূর্ব থেকেই পাইয়ের মান মুখস্থ করা কিছু কিছু মানুষের নেশার মতো ছিল। ২০০৬ সালে আকিরা হারাগুচি নামে এক অবসরপ্রাপ্ত জাপানি প্রকৌশলী দাবি করেন তিনি ১,০০,০০০ ঘর পর্যন্ত পাইয়ের মান বলতে পারেন।[২৩] অবশ্য এ দাবি এখনো গিনেস ওয়ার্ল্ড রেকর্ডস কর্তৃক পরীক্ষিত হয়নি। গিনেসের স্বীকৃত পাইয়ের মান বলার পূর্বের রেকর্ড ছিল ৬৭,৮৯০ ঘর, যার অধিকারী চীনেরলু চাও।[২৪] তিনি ২৪ ঘণ্টা ৪ মিনিট সময় নিয়ে দশমিকের পর ৬৭,৮৯০ ঘর পর্যন্ত পাইয়ের মান শুদ্ধভাবে বলতে সক্ষম হন।[২৫] সর্বশেষ গিনেস ওয়ার্ল্ড রেকর্ডস স্বীকৃত π-এর মান মুখস্থ বলার রেকর্ডটি হলো ৭০,০০০ ঘর পর্যন্ত, যার অধিকারী হলেন রাজবীর মীনা। তিনি ২০১৫ সালের ২১ মার্চ ৯ ঘন্টা ২৭ মিনিটে ভারতে শুদ্ধভাবে বলতে সক্ষম হয়েছিলেন।[২৬]
পাইয়ের মান মনে রাখার বেশ কিছু কৌশল আছে, এর মধ্যে সবচেয়ে জনপ্রিয় হলো পাই কবিতা (ইংরেজিতে: piem)। এই কবিতাগুলি এমন যে, এর প্রত্যেকটি শব্দের দৈর্ঘ্য (বর্ণে) পাইয়ের একেকটি অঙ্ক প্রকাশ করে।
গণিত ও বিজ্ঞানে ব্যবহার
গণিতের বিভিন্ন ক্ষেত্রে π ব্যবহৃত হয়। এমনকি বিশুদ্ধ ইউক্লিডীয় জ্যামিতির গণ্ডি পেরিয়ে পাই অন্য সব শাখাতে প্রবেশ করেছে।[২৭]
জ্যামিতি ও ত্রিকোণমিতি
r ব্যাসার্ধ্য এবং d=2r ব্যাসবিশিষ্ট একটি বৃত্তের পরিধি হচ্ছে πd এবং তার ক্ষেত্রফল হল πr2। এছাড়া বৃত্তকে কেন্দ্র করে গড়ে ওঠা আরও বেশ কিছু আকৃতি ও গড়নের ক্ষেত্রফল ও আয়তন নির্ণয়ে পাই ব্যবহৃত হয়। এর মধ্যে রয়েছে উপবৃত্ত, গোলক, কোণ এবং টোরাস।[২৮] একই সাথে পাই নির্দিষ্ট যোগজে পরিধি, ক্ষেত্রফল ও আয়তন প্রকাশের জন্য ব্যবহৃত হয়। বৃত্তের বিভিন্ন সজ্জার মাধ্যমেই সৃষ্ট পরিধি, ক্ষেত্রফল ও আয়তনই এখানে বিবেচ্য। যেমন, একটি একক চাকতির ক্ষেত্রফলের সমীকরণটি হচ্ছে:[২৯]
এবং
সমীকরণটি দ্বারা একক বৃত্তের পরিধির অর্ধেক নির্ণয় করা যায়।[২৮] আরও জটিল সমীকরণ পাইয়ের সহায়তায় যোগজীকরণ করা যায়। তবে সেক্ষেত্রে সলিড্ অফ রিভলিউশন এর প্রয়োজন পড়ে।[৩০]
ত্রিকোণমিতিক অপেক্ষকের একক বৃত্ত সংজ্ঞা থেকে জানা যায়, সাইন ও কোসাইন অপেক্ষকের পর্যায় হচ্ছে 2π। অর্থাৎ, সকল চলক x এবং সকল পূর্ণ সংখ্যা n এর জন্য sin(x) = sin(x + 2πn) এবং cos(x) = cos(x + 2πn)। কারণ, সকল পূর্ণ সংখ্যা n এর জন্য sin(0) = 0, sin(2πn) = 0। অন্যদিকে আবার, ১৮০° কোণ মানের দিক থেকে π রেডিয়ানের সমান। অন্য কথায় ১° = (π/১৮০) রেডিয়ান।
আধুনিক গণিতে, অনেক সময়ই ত্রিকোণমিতিক অপেক্ষক ব্যবহার করে পাইয়ের সংজ্ঞা দেয়া হয়। উদাহরণস্বরূপ, sin x = 0 সমীকরণটির কথা ধরা যাক। x-এর যে ক্ষুদ্রতম অশূন্য ধনাত্মক মানের জন্য এই সমীকরণটি সত্য হবে তাকে পাইয়ের সংজ্ঞা হিসেবে ধরা যায়। কারণ sin π = 0। এভাবে সংজ্ঞায়িত করে ইউক্লিডীয় জ্যামিতি ও সমাকলনের অপ্রয়োজনীয় ঝামেলা এড়ানো যায়। একইভাবে বিপরীত ত্রিকোণমিতিক অপেক্ষক ব্যবহার করেও এ ধরনের সংজ্ঞা দেয়া যায়। একটি উদাহরণ দেয়া যাক, π = 2 arccos(0) or π = 4 arctan(1)। পাইয়ের অসীম ধারা প্রতিপাদন করার জন্যও বিপরীত ত্রিকোণমিতিক অপেক্ষক ব্যবহার করা হয়। বিপরীত ত্রিককণমিতিক অপেক্ষক বর্ধিত করার মাধ্যমেই এই প্রতিপাদনটি করা সম্ভব।
সম্ভবত পাইয়ের সহজবোধ্য সংজ্ঞার কারণেই পাই এর ধারণা, বিশেষ করে এর দশমিক প্রকাশ যে কোন গাণিতিক ধারণার চেয়ে বহুগুণ বেশি জনপ্রিয়।[৩১] পাই গণিতবিদ ও সাধারণ মানুষ - সবার কাছেই দারুণ প্রিয়।[৩১] পাইয়ের মান নির্ণয়ে অগ্রগতির খবর এবং এ নিয়ে লোকজনের উচ্ছ্বাস মিডিয়াতে হরদম খবর হয়।[৩২]
পাই দিবস পালন করা হয় ১৪ই মার্চ, যা পাইয়ের মান ৩.১৪ থেকে এসেছে।[৩৩] পাইয়ের মান "৩.১৪১৫৯!"-কে আনন্দধ্বনি হিসাবে ব্যবহার করে এমআইটির শিক্ষার্থীরা।[৩৪] এছাড়া পাইয়ের চিহ্ন ও এর মান খোদাই করা "পাই প্লেট"ও স্মারক হিসাবে কিনতে পাওয়া যায়।[৩৫]
↑Richter, Helmut (1999-07-28)। "Pi Is Irrational"। Leibniz Rechenzentrum। ২০১২-০৮-০৫ তারিখে মূল থেকে আর্কাইভ করা। সংগ্রহের তারিখ 2007-11-04।এখানে তারিখের মান পরীক্ষা করুন: |তারিখ= (সাহায্য)
↑Eymard, Pierre (২০০৪)। "2.6"। The Number π (English ভাষায়)। Stephen S. Wilson (translator)। American Mathematical Society। পৃষ্ঠা 53। আইএসবিএন0821832468। সংগ্রহের তারিখ ২০০৭-১১-০৪।অজানা প্যারামিটার |month= উপেক্ষা করা হয়েছে (সাহায্য); অজানা প্যারামিটার |coauthors= উপেক্ষা করা হয়েছে (|author= ব্যবহারের পরামর্শ দেয়া হচ্ছে) (সাহায্য)উদ্ধৃতি শৈলী রক্ষণাবেক্ষণ: অচেনা ভাষা (link)
↑ কখগO'Connor, J J (2001-08)। "A history of Pi"। সংগ্রহের তারিখ 2007-10-30।অজানা প্যারামিটার |coauthors= উপেক্ষা করা হয়েছে (|author= ব্যবহারের পরামর্শ দেয়া হচ্ছে) (সাহায্য); এখানে তারিখের মান পরীক্ষা করুন: |তারিখ= (সাহায্য)
↑E.g., MSNBC, Man recites pi from memory to 83,431 places July 3, 2005; Matt Schudel, Obituaries: "John W. Wrench, Jr.: Mathematician Had a Taste for Pi" The Washington Post, March 25, 2009, p. B5.