কোয়ান্টাম ডট (ইংরাজী: quantum dot) এমন এক বিশেষ আকারে থাকা পদার্থ (প্রধানত অর্ধপরিবাহী) যেখানে এক্সাইটন (exciton) (এগুলি ইলেকট্রন এবং হোল) তিন দিক থেকেই আবদ্ধ হয়ে থাকে। এই কোয়ান্টাম ডটগুলির ধর্ম সেই পদার্থটির আণবিক অবস্থা এবং স্থূল অবস্থার ধর্মের মধ্যবর্তী। [১][২][৩][৪] ১৯৮০ সালের প্রারম্ভে আলেক্সেই একিমোভ (Alexei Ekimov) কাঁচমেট্রিক্সে[৪] এবং লুইস ই ব্রুস তরলে দ্রবীভূত অবস্থায় কোয়ান্টাম ডট আবিষ্কার করেছিলেন। এই বিশেষ অবস্থায় থাকা পদার্থকে কোয়ান্টাম ডট বলে নামকরণ করেছিলেন পদার্থবিদ মার্ক রিড[৫]।
কোয়ান্টাম ডট এমন কিছু অর্ধপরিবাহী যার ইলেক্ট্রনিক লক্ষণসমূহ এর আকার এবং আকৃতির ওপর নির্ভর করে। সাধারণত কোয়ান্টাম ডটের আকার যতটা ছোট হয়, এর পটি পার্থক্য ততই বেশি হয়। এই পটি পার্থক্য যত বেশি হয়, কোনো একটি ইলেকট্রনকেযোজ্যতা পটি থেকে পরিবহন পটি পর্যন্ত আনতে তত বেশি শক্তির প্রয়োজন হয় এবং যখন ডটটি পুনরায় নিম্নতম শক্তির অবস্থায় আসে, তখন তারচেয়ে বেশি শক্তিসম্পন্নফোটন নির্গত হয়।[৬]
কোয়ান্টাম আবন্ধন
পাউলির অপবর্জন নীতির অনুসারে, কোনো এক অর্ধপরিবাহী ইলেকট্রনসমূহ একই শক্তিস্তরে থাকতে পারে না। এই ক্ষেত্রে এর শক্তিস্তরসমূহ বাক্সতে আবদ্ধ কণিকা (Particle in a box)-র শক্তিস্তরের সাথে মেলানো যায়। এথেকে এটিই স্পষ্ট হয় যে, এই শক্তিস্তরসমূহ এর আকারের ওপর নির্ভর করে। যখন কোয়ান্টাম ডটটির আকার এর এক্সাইটন বোর ব্যাসার্ধের চেয়ে ছোট হয় তখন এর প্রতিটি শক্তিস্তর বিচ্ছিন্ন হয়ে কয়েকটি ছোট ছোট শক্তি উপস্তরে বিভক্ত হয়। যদি এক্সাইটন বোর ব্যাসার্ধের মান কোয়ান্টাম ডটের ব্যাস থেকে বড় হয়, সেই অবস্থাকে দুর্বল সীমাবদ্ধ অঞ্চল এবং যদি ছোট হয়, সেই অবস্থাকে সবল সীমাবদ্ধ অঞ্চল বলা হয়। এখন যদি কোয়ান্টাম ডটের আকার অত্যন্ত ছোট হয় (১০ ন্যানোমিটার থেকে ছোট), তখন কোয়ান্টাম লক্ষণসমূহ স্পষ্ট হয়ে ফুটে বেরোয়। সঙ্গে এর ইলেকট্রনিক তথা আলোক নির্গমন সম্পর্কিত লক্ষণসমূহ পরিবর্তিত হয়।
যখন একটি যোজ্যতা পটির ইলেকট্রন উপযুক্ত শক্তি লাভ করে পরিবহন পটিতে যায়, তখন যোজ্যতা পটিতে একটি খালি স্থানের সৃষ্টি হয়। একে হোল বলা হয়। সকল বস্তুতেই এটি থাকে নূন্যতম শক্তিস্তরে থাকার বিচারে। এখন পরিবহন পটিতে থাকা উচ্চশক্তিসম্পন্ন ইলেকট্রনও পরিবহন পটি থেকে নেমে নিম্ন শক্তিস্তরের যোজ্যতা পটি পায়। তাতে এটি পুনরায় হোলের সাথে যুক্ত হয় এবং যোজ্যতা পটি ও পরিবহন পটির শক্তির পার্থক্যের সমপরিমাণের শক্তি কোয়ান্টাম ডটটি থেকে নির্গত হয়। যেহেতু এই শক্তির পার্থক্য কোয়ান্টাম ডটের আকারের ওপর নির্ভর করে, সেজন্য নির্গত ফোটনের শক্তি এবং তরঙ্গদৈর্ঘ্যও এর ওপরে নির্ভরশীল।
পটি পার্থক্য
সবল আবন্ধন অঞ্চলে কোয়ান্টাম ডটের আকার এক্সাইটন বোর ব্যাসার্ধ (চিত্রে ab*) তে কম হওয়ার কারণে পটি পার্থক্যের মানও কম হয় এবং শক্তিস্তরসমূহ বিক্ষিপ্ত হয়ে পড়ে। ফলে মোট নির্গমন শক্তির মান বাড়ে এবং এটি বিভিন্ন তরঙ্গদৈর্ঘ্যের আলো দিতে সমর্থ হয়।
আবন্ধন শক্তি
বাক্সতে আবদ্ধ কণিকা (Particle in a box)র ধারণাকে মনে করে এক্সাইটনের একটা নমুনা তৈরি করা যায়। ইলেকট্রন এবং হোলকে বোরের হাইড্রোজেন পরমাণুর নমুনা (Bohr Hydrogen atom model)-য় উল্লেখ করা একটি হাইড্রোজেনপরমাণুর সাথে তুলনা করা যায়। এতে ab হল বোর ব্যাসার্ধ (০.০৫৩ ন্যানোমিটার), m হল ভর এবং μ হল আকারের ওপর নির্ভরশীল অঙ্গন ধ্রুবক; এক্সাইটনের শক্তিস্তরের শক্তি হাইড্রোজেন পরমাণুর নমুনা অনুযায়ী গাণিতিকভাবে পাওয়া হাইড্রোজেনের প্রথম শক্তিস্তর (n= ১) এর শক্তির সাথে সমান হবে। অবশ্য সমীকরণটি সমাধানের জন্য সাধারণ ভরের পরিবর্তে হ্রাসিত ভর (Reduced mass) ব্যবহার করতে হয়। কোয়ান্টাম ডটের আকার পরিবর্তন করলে এক্সাইটনের আবন্ধন শক্তি পরিবর্তিত হবে।
বন্ধনে থাকা এক্সাইটনের শক্তি
ঋণাত্মক আধানযুক্ত ইলেকট্রন এবং ধনাত্মক আধানযুক্ত হোলের মধ্যে ‘কুলম্ব আকর্ষণ বল’ ক্রিয়া করে। আকর্ষণে প্রয়োজনীয় ঋণাত্মক শক্তি রিডবার্গ শক্তির সমানুপাতিক এবং এর সময়ের ওপর নির্ভরশীল অঙ্গন ধ্রুবক (Dielectric constant)-এর বর্গের ব্যস্তানুপাতিক। যখন একটি অর্ধপরিবাহী ন্যানোস্ফটিকের আকার এর এক্সাইটন বোর ব্যাসার্ধের থেকে ছোট হয়, এর সাথে তুল্যভাবে কুলম্ব আকর্ষণ বা বিকর্ষণ বলের পরিমাণও পরিবর্তিত হয়।
এখন এই শক্তিসমূহের যোগফল হবে:
যেখানে:
μ - হ্রাসিত ভর
a - ব্যাসার্ধ
me - একটি ইলেকট্রনের ভর
mh - একটি হোলের ভর
εr - সময়ের উপর নির্ভরশীল অঙ্গন ধ্রুবক
যদিও উক্ত সমীকরণসমূহ কয়েকটি সরলীকৃত স্বতঃসিদ্ধ প্রয়োগ করে পাওয়া গেছে, কোয়ান্টাম আবন্ধনের কোয়ান্টাম ডটের আকারের ওপর নির্ভরশীলতা বোঝাতে এটি সফল হয়েছে। [৭][৮]
প্রস্তুত প্রণালী
গবেষণাগারে বিভিন্ন ধরনে কোয়ান্টাম ডট প্রস্তুত করা যায়। [৯]
তরলের দ্রবীভূত অবস্থায় রাসায়নিক বিক্রিয়ার দ্বারা
তরলে দ্রবীভূত অবস্থায় থাকা কোয়ান্টাম ডট প্রস্তুত করবার জন্য প্রয়োজনীয় রাসায়নিক দ্রব্যসমূহ কোনো একটি দ্রাবকে দ্রবীভূত করে নিয়ে সেগুলিকে অতি উচ্চ উষ্ণতায় নিয়ে সেগুলির মধ্যে রাসায়নিক বিক্রিয়া ঘটিয়ে দেওয়া হয়। যখন এই উষ্ণতায় মনোমারসমূহঅতিসংপৃক্ত অবস্থা পায়, তাতেই ন্যানোস্ফটিক গঠন হতে আরম্ভ করে। synthesized
আলোক নির্গমন লক্ষণসমূহ
কোয়ান্টাম ডটের সবসময় দৃষ্টিগোচর হওয়া একটা লক্ষণ হল এর নির্গমন করা আলোর রং। যদিও এই গঠন হওয়া পদার্থই এর অভ্যন্তরীণ লক্ষণসমূহ নির্ধারণ করে, কোয়ান্টাম ডটের ক্ষেত্রে এর কোয়ান্টাম আবন্ধিত আকার বহু বেশি গুরুত্বপূর্ণ। একই পদার্থে গঠিত কিন্তু ভিন্ন ভিন্ন আকারের কোয়ান্টাম ডট ভিন্ন ভিন্ন রঙের আলো নির্গমন করে। এর একমাত্র কারণ কোয়ান্টাম আবন্ধন।
কোয়ান্টাম ডটের আকার বড়ো হয়ে যেতে থাকা মানে এই নির্গমন করা আলোর রং সৌর বর্ণালীর রঙের পিছনে গিয়ে থাকা। Nanotechnology তে প্রকাশিত হওয়া একটা প্রবন্ধে উল্লেখ করা হয়েছে যে কোয়ান্টাম ডটের আকৃতির ওপর এই নির্গমন করা আলোর তরঙ্গদৈর্ঘ্য নির্ভর করে।
ব্যবহার
কোয়ান্টাম ডটের সহজে আকার পরিবর্তনের লক্ষণের জন্য একে বিভিন্ন ক্ষেত্রে ব্যবহার করা যায়।
এর আকার অত্যন্ত ছোট (প্রায় শুন্য আয়তন)-এর জন্য এর শক্তিস্তরের ঘনত্ব (Density of states) খুবই বেশি হয়। এই ইলেক্ট্রন পরিবহন এবং আলোক নির্গমণের জন্য এটি অতি উত্তম পদার্থ। সেজন্যই একে ডায়োড লেজার, অ্যামপ্লিফায়ার এবং জৈব সংবেদনের জন্য ব্যবহার করা হয়।
কোয়ান্টাম ডটকে স্থানীয়ভাবে বিদ্যুত-চুম্বকীয় ক্ষেত্র প্রয়োগ করে উত্তেজিত করে তোলা যায়। একে পৃষ্ঠীয় প্লাজমোন অনুরণন (Surface Plasmon resonance) -এ স্পষ্টকরে দেখা যায়।
আলোক-সাংকেতিক চিহ্ন (Optical encoding) তৈয়ার করার জন্য কোয়ান্টাম ডট ব্যবহার করা হয়।
মানব দেহের কোনো বিশেষ অংশের নমুনা বিচার করার জন্যও কোয়ান্টাম ডট ব্যবহার করা যায়।
↑C.B. Murray, C.R. Kagan, M. G. Bawendi (২০০০)। "Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies"। Annual Review of Materials Research। 30 (1): 545–610। ডিওআই:10.1146/annurev.matsci.30.1.545। বিবকোড:2000AnRMS..30..545M।উদ্ধৃতি শৈলী রক্ষণাবেক্ষণ: একাধিক নাম: লেখকগণের তালিকা (link)
↑ কখEkimov, A. I. & Onushchenko, A. A. (১৯৮১)। "Quantum size effect in three-dimensional microscopic semiconductor crystals"। JETP Lett.। 34: 345–349। বিবকোড:1981JETPL..34..345E।উদ্ধৃতি শৈলী রক্ষণাবেক্ষণ: একাধিক নাম: লেখকগণের তালিকা (link)
↑Reed MA, Randall JN, Aggarwal RJ, Matyi RJ, Moore TM, Wetsel AE (১৯৮৮)। "Observation of discrete electronic states in a zero-dimensional semiconductor nanostructure"। Phys Rev Lett। 60 (6): 535–537। ডিওআই:10.1103/PhysRevLett.60.535। পিএমআইডি10038575। বিবকোড:1988PhRvL..60..535R।উদ্ধৃতি শৈলী রক্ষণাবেক্ষণ: একাধিক নাম: লেখকগণের তালিকা (link) (1988).[১]