El númberu , conocíu n'ocasiones como númberu d'Euler o constante de Napier, foi reconocíu y utilizáu per primer vegada pol matemáticu escocésJohn Napier, quien introdució'l conceutu de llogaritmu nel cálculu matemáticu.
Xuega un papel importante nel cálculu y nel analís matemáticu, na definición de la función más importante de la matemática,[2] la función esponencial, según lo ye de la xeometría y el númberu del analís complexu y de la álxebra.
El númberu , al igual que'l númberu y el númberu áureo (φ), ye un númberu irracional, non expresable por aciu una razón de dos númberos enteros; o bien, nun puede ser representáu por un numberal decimal exactu o un decimal periódicu. Amás, tamién como , ye un númberu trascendente, esto ye, que nun puede ser raigañu de nenguna ecuación alxebraica con coeficientes racionales.[3]
El valor de truncáu a les sos primeres cifres decimales ye'l siguiente:
A diferencia de , la introducción del númberu na matemática ye relativamente recién, lo cual tien sentíu si considérase qu'esti postreru tuvo un orixe analíticu y non xeométricu, como'l primeru. Nes pallabres d'Eli Maor:[4]
The story of has been extensively told, non doubt because its history goes back to ancient times, but
also because much of it can be grasped without a knowledge of advanced mathematics. Perhaps non book did better than Petr Beckmann's A History of Pi, a model of popular yet clear and precise exposition. The number e fared less well. Not only is it of more modern vintage, but its history is closely associated with the calculus, the subject that is traditionally regarded as the gate to "higher" mathematics.
La hestoria de foi extensivamente contada, ensin dulda non yá porque la so hestoria traer dende tiempos antiguos, sinón tamién porque enforma d'él pue ser entendíu ensin una conocencia avanzada de les matemátiques. Quiciabes nengún llibru foi meyor que Hestoria de Pi de Petr Beckmann, un modelu d'esposición popular pero tamién claro y precisu. Al númberu y nun-y foi tan bien. Non yá ye d'una dómina más moderna, sinón tamién que la so hestoria ta cercanamente acomuñada col cálculu, la tema que ye tradicionalmente vistu como la puerta escontra matemátiques "más elevaes".
Les primeres referencies a la constante fueron publicaes en 1618 na tabla nun apéndiz d'un trabayu sobre llogaritmos de John Napier.[5]
Sicasí, esta tabla nun contenía'l valor de la constante, sinón que yera a cencielles una llista de llogaritmos naturales calculaos a partir d'ésta. Créese que la tabla foi escrita por William Oughtred. Unos años más tarde, en 1624, vese nuevamente arreyáu na lliteratura matemática, anque non del tou. Esi añu, Briggs dio un aproximamientu numbéricu a los llogaritmos en base 10, pero nun mentó al númberu explícitamente nel so trabayu.
La siguiente apaición de ee daqué dudosa. En 1647, Saint-Vincent calculó l'área so la hipérbola rectangular. Si reconoció la conexón colos llogaritmos ye una cuestión abierta a alderique, ya inclusive si facer, nun hubo razón por que tratara con explícitamente. Quien sí entendió la rellación ente la hipérbola rectangular y el llogaritmu foi Huygens allá por 1661, al estudiar el problema del área so la curva . El númberu ee aquel valor d'ascisa a tomar por que l'área so esta curva a partir de 1 sía igual a 1. Esta ye la propiedá que fai que sía la base de los llogaritmos naturales, y magar nun yera entendida del tou polos matemáticos d'aquel entós, d'a pocu diben averándose a la so comprensión.
Sicasí, y seique inesperadamente, nun ye al traviés de los llogaritmos que ee descubiertu, sinón del estudiu del interés compuestu, problema encetáu por Jacob Bernoulli en 1683. Si inviértese una Unidá Monetaria (que vamos embrivir en delantre como UM) con un interés del 100% añal y páguense los intereses una vegada al añu, van llograse 2 UM. Si paguen los intereses 2 vegaes al añu, estremando l'interés ente 2, la cantidá llograda ye 1 UM multiplicáu por 1,5 dos veces, ye dicir 1 UM x 1,50² = 2,25 UM. Si estremamos l'añu en 4 periodos (trimestres), al igual que la tasa d'interés, llógrense 1 UM x 1,25⁴ = 2,4414... En casu de pagos mensuales el monto xube a 1 UM x = 2,61303...UM. Por tanto, cada vez que s'aumentar la cantidá de periodos de pagu nun factor de n (que tiende a crecer ensin llende) y amenórgase la tasa d'interés nel periodu, nun factor de , el total d'unidaes monetaries llograes va tar dau pola siguiente espresión:
Bernoulli utilizó'l teorema del binomiu p'amosar que dichu llende atopar ente 2 y 3. Puede considerase esta'l primer aproximamientu atopáu pa . Inclusive si aceptamos esta como una definición de , seria la primer vegada qu'un númberu defínese como un procesu de llende. Con seguridá, Bernoulli nun reconoció nenguna conexón ente'l so trabayu y los llogaritmos.
D'equí provién la definición que se da de en finances, qu'espresa qu'esti númberu ye la llende d'una inversión de 1 UM con una tasa d'interés al 100% añal compuestu en forma continua. En forma más xeneral, una inversión que s'empecipia con un capital C y una tasa d'interés añal R, va apurrir UM con interés compuestu.
El primer usu conocíu de la constante, representáu pola lletra b, foi nuna carta de Gottfried Leibniz a Christiaan Huygens en 1690 y 1691. Leonhard Euler empezó a utilizar la lletra y pa identificar la constante en 1727, y el primer usu de nuna publicación foi en Mechanica, d'Euler, publicáu en 1736. Ente que nos años subsiguientes dellos investigadores usaron la lletra c, foi la más común, y finalmente convirtióse na terminoloxía avezada. Euler realizó dellos apurras en rellación a nos años siguientes, pero nun foi hasta 1748 cuando publicó'l so Introductio in Analysin infinitorum que dio un tratamientu definitivu a les idees sobre . Ellí amosó que :
y dio un aproximamientu pa de 18 cifres decimales, ensin amosar cómo la llogró. Tamién dio la so espresión como fracción continua reconociendo'l patrón que sigue dicha espresión. Foi esta carauterización la que lu sirvió de base pa concluyir que ee un númberu irracional, y la mayor parte de la comunidá acepta que Euler foi'l primeru en probar esta propiedá.
La pasión que guio a muncha xente a calcular más y más cifres decimales de nunca paeció retrucar de la mesma manera pa . Sicasí, dalgunos embarcáronse na xera de calcular la so espansión decimal y el primeru en contribuyir con esto foi William Shanks en 1854. Vale la pena destacar que Shanks foi un entusiasta entá mayor del cálculu de los decimales de . James Whitbread Lee Glaisher amosó que los primeres 137 llugares de Shanks pal cálculu de eeren correutos, pero atopó un error que, depués de correxíu por el mesmu Shanks, refundio cifres decimales de y hasta'l llugar 205. Ello ye que precísense alredor de 120 términos de 1 + 1/1! + 1/2! + 1/3! + ... pa llograr 200 decimales.
Espansiones decimales entá mayores siguieron colos trabayos de Boorman en 1884, quien calculó 346 llugares y topó que'l so cómputu coincidía col de Shanks hasta'l llugar 187, pero depués diverxíen. En 1887 Adams envaloró'l llogaritmu de en base 10 con 272 cifres exactes.
En 1873, Charles Hermite (1822-1905) llogró demostrar que ee trascendente, a dichu llogru llegó usando un polinomiu, consiguíu con ayuda de fracciones continues, emplegaes, enantes, por Lambert. David Hilbert — tamién Karl Weierstrass y otros — propunxeron, posteriomente, variantes y cambeos de les primeres demostraciones.[6]
Definición
La definición más común de ee como'l valor llende de la socesión .[7] En símbolos, :
Dacuando tómase tamién como puntu de partida la serie
que s'espande como :
Otra definición habitual[8] dada al traviés del cálculu integral ye como solución de la ecuación
Pa cualesquier , la socesión converxe. Podemos denotar dichu llende con :
Llámase función esponencial a la función real que la so variable independiente percuerre'l conxuntu de los númberos reales, y defínese como
La traza más relevante de la función esponencial ye que la so función derivada (qu'esiste en tou puntu) coincide cola mesma función, esto ye,
Amás, ye la única función non hermano nula (a menos de multiplicación por constantes) con esta propiedá. Esto fai de la esponencial la función más importante del analís matemáticu, y en particular pa les ecuaciones diferenciales.
El desenvolvimientu en serie de la función realizar por aciu la fórmula de Maclaurin. Yá que
la fórmula de Maclaurin escribir de la siguiente manera:
Suponiendo x=1, llógrase'l valor averáu del númberu
Esta fórmula llegó como una revelación a Benjamin Peirce, profesor de Harvard, quien la espunxo ante los sos alumnos, y manifestó la so reconocencia ante la maraviyosa conexón de los cinco númberos más famosos de tola matemática.[13]
Probabilidá ya estadística
El númberu e tamién apaez n'aplicaciones a la teoría de probabilidaes. Un exemplu ye'l problema de los desigües, decubierto en parte por Jacob Bernoulli xunto con Pierre Raymond de Montmort, tamién conocíu como el problema de los sombreros:[14] los n convidaos a una fiesta dexen a la entrada los sos sombreros col mayordomu, quien los asitia depués en n compartimientos, cada unu col nome d'unu de los invitaos. Pero'l mayordomu nun conoz la identidá de los invitaos, y entós asitia los sombreros nos compartimientos al azar. El problema de De Montmort ye atopar la probabilidá de que nengún de los sombreros sía asitiáu nel compartimientu correutu. La respuesta ye:
A midida que el númberu n d'invitaos tiende a infinitu, P(n) averar a 1/e. Mas entá, el númberu de maneres en que pueden asitiase los sombreros nos compartimientos de forma que nengún correspuenda al so dueñu ye n!/e arrondáu al enteru más cercanu, pa cada positivu n.[15]
La resultancia anterior puede reformulase de la siguiente manera: sía la probabilidá de qu'una función aleatoria del conxuntu 1, 2, ..., n en sí mesmu tenga siquier un puntu fixu. Entós
Otra apaición de na probabilidá ye nel siguiente problema: tiense una secuencia infinita de variables aleatories X1, X2..., con distribución uniforme en [0,1]. Sía V el menor enteru n tal que la suma de les primeres n observaciones ye mayor que 1:
Depués, .[16] Esta resultancia dexa envalorar el valor de la constante per mediu de simulaciones aleatories.[17]
Al igual que , puede interpretase como un cociente ente cantidaes amestaes a cierta curva del planu.
Consideremos una curva cola propiedá de que cualesquier semirrecta que naz nel orixe corta a esta formando un ángulu de radianes (esisten preseos que dexen trazar curves con esta carauterística).[20][21] Si tomamos dos puntos cualesquier de la curva con una separación angular de 1 radián, y entonce tiense
Esta construcción puede paecer forzada pol fechu de riquir midir un radián, sicasí, esto puede consiguise bien fácilmente si dexamos la operación d'esmucir una circunferencia sobre una recta (operación más qu'avezada dientro del conxuntu de curves mecániques).
La curva cola propiedá enantes señalada ye un casu especial d'espiral logarítmica o equiangular, y puede probase fácilmente qu'a partir de la so condición de "equiangularidad", la so ecuación en coordenaes polares vien dada por
Más xeneralmente, si la curva ye cortada formando un ángulu , entós la so espresión en coordenaes polares ye :.
Otra manifestación relevante de y na xeometría dar cola catenaria. La catenaria ye la curva que la so forma ye adoptada por una cuerda de densidá uniforme suxeta polos sos dos estremos y sometida namái a encomalo de la gravedá.
Queda determinada pola posición de los sos estremos y el so llargor.
El númberu real ee irracional,[22] lo que significa que nun puede espresase como fracción de dos númberos enteros, como demostró Euler en 1737. Na so demostración, Euler valir de la representación de e como fracción continua, que al ser infinita, nun puede corresponder a un númberu racional. Sicasí, la demostración más conocida foi dada por Fourier, y básase nel desenvolvimientu en serie del númberu.
J. H. Lambert probó en 1768 que ee irracional si ee un racional positivu.
Tamién ye un trascendente, esto ye, que nun ye'l raigañu de nengún polinomiu de coeficientes enteros (ver Teorema de Lindemann–Weierstrass). Foi'l primer númberu trascendente que foi probáu como tal, ensin ser construyíu específicamente pa tal propósitu (comparar col númberu de Liouville). La demostración d'esto foi dada por Charles Hermite en 1873.[23] Créese que e amás ye un númberu normal.
Hilbert simplificó la prueba de Hermite, Hurwitz dio una variación a la de Hilbert. Esta última prueba presentar Herstein, en castellán[24].
Fórmules que contienen al númberu e
De siguío, esíbense delles fórmules qu'arreyen de diverses formes a :
onde'l n-ésimo factor ye la n-ésima raigañu del productu :
como tamién el productu infinitu
Como fracción continua
El desenvolvimientu decimal de e nun amuesa regularidá dalguna. Sicasí, coles fracciones continues, que pueden ser normalizaes (colos numberadores toos iguales a 1) o non, llogramos, en fracción continua normalizada:
lo que s'escribe , propiedá descubierta por Leonhard Euler[33] (A003417 en OEIS). En fracción continua non normalizada tiense
En dambos casos, e presenta regularidaes non casuales.
Díxitos conocíos
El númberu de díxitos conocíos de e aumentó descomanadamente mientres les últimes décades. Esto ye debíu tanto al aumentu del desempeñu de los ordenadores como tamién a la meyora de los algoritmos utilizaos.[34][35]
En 1949, J. von Neumann y el so grupu utilizaron el ENIAC pa llograr 2010 decimales. D. Shanks y J.W. Wrench toparon hasta 100.265 en 1961 cola fórmula d'Euler con un IBM 7090. Emplegar 2,5 hores. Yá pa 1994, R. Nemiroff y J. Bonnell llegaren a 10.000.000 de decimales.
Nes últimes décades, los ordenadores fueron capaces de llograr númberos que tienen una inmensa cantidá de decimales. Asina, por casu, nel
añu 2000, utilizando'l programa de cálculu PiFast33 nun ordenador Pentium III 800, llográronse 12
884 901 000 cifres decimales, pa lo que se precisó 167 hores.
Na dómina computacional del cálculu de e les cifres disparáronse, non yá por cuenta de la potencia de cálculu qu'estes máquines son capaces de xenerar, sinón tamién pol prestíu que trai pal constructor de la máquina cuando la so marca apaez na llista de los récores.
Primeres cien cifres decimales
Los cien primeres cifres de e son:
Curiosidaes
Les seiciones de curiosidaes han evitase. Intenta ameyorar esti artículu introduciendo la información útil d'esta seición nel restu del testu y quitando los datos non afayadizos.
Regles mnemotécniques
Nel so desenvolvimientu decimal, dempués del “2,7” el númberu “1828” apaez dos veces, y dempués vienen los ángulos d'un triángulu rectángulu isósceles que son 45°, 90°, 45°: 2,7 1828 1828 45 90 45.
878/323 = 2.718266254 ... ye'l meyor aproximamientu racional utilizando enteros menores que 1000.[46] Amás, dambos son palíndromos y 878-323=555.
Inventáronse frases como regles mnemotécniques pa poder recordar les primeres cifres. Una forma de memorizar los 13 primeros díxitos ye con esta frase, namái hai que cuntar les lletres de cada pallabra: "El trabayu y esfuerciu de recordar y revuelve el mio estómagu, pero voi poder alcordame". Otru exemplu, en francés: "El to aideras a rappeler ta quantite a beaucoup de docteurs amis" (Tu vas ayudar a recordar la cantidá a munchos doctores amigos)
e na cultura informática
Nel so ufierta publica inicial de 2004, Google anunció la so intención de recaldar $2,718,281,828, que son e miles de millones de dólares, arredondiaos a un valor enteru.
Google foi tamién responsable d'un cartelu publicitariu qu'apaeció nel corazón de Silicon Valley, y más tarde en Cambridge; Seattle; y Austin. Nél lleíase "{primer primu de 10 díxitos topáu ente 1vos díxitos consecutivos de e}.com". Resolviendo esti problema y visitando l'anunciáu sitio web, aportar a un problema entá más difícil, que de la mesma conducía a los Google Labs, onde'l visitante taba convidáu a dexar el so currículum.[47] El primer primu de 10 díxitos en e ye 7427466391, qu'empieza nel noventenu novenu (99°) díxitu.[48]
L'informáticu Donald Knuth fai que'l númberu de versión del so programa Metafont averar a e. Les versiones son 2, 2.7, 2.71, 2.718, etc.[49]
Poemes al númberu e
La matemática y poeta Sarah Glaz escribió un ellaboráu y estensu poema nel que describe la hestoria de e y les sos principales propiedaes.[50]
Otru poema ye'l realizáu por José Acevedo Jiménez:[51]
Singular y encantador ye'l númberu (e).
Los sos primeros nueve díxitos decimales nun tienen de confundir te,
718281828, el 18 28 que se repite,
pos al igual que (pi) ye un númberu irracional.
De la fórmula del interés compuestu,
estiende la llende hasta l'infinitu
y vas entender lo que digo.
¡Oh! qué númberu tan fascinante qu'apaez nes finances,
del cálculu de Newton y Leibniz nin falar,
qu'atopó nos llogaritmos de Neper
la so morada al ser la so base natural.
Intrigante ye'l númberu (e),
que al alzalo a la la so derivada permanez igual;
¡qué grandiosu trascendental!
ensin ser la so intención del gran Euler ye la inicial
y nes funciones trigonométriques hiperbóliques podemos atopar,
a esi interminable numberal.
Les estrelles vamos llograr cuntar,
mas les cifres de (e) enxamás,
pos como cociente d'enteros nunca podremos espresar;
y como por mandatu divín,
con (pi) y la unidá imaxinaria puede rellacionase por aciu una formosa identidá,
que namái a Euler pudo reveláse-y.
Por eso y muncho más en diverses cañes de les matemátiques,
Esllumáu pola identidá d'Euler, Benjamin Pierce suxirió crear nuevos símbolos pa e . Pierce publicó la so suxerencia en revistes de matemática y llibros de la so autoría. Por cuenta de les dificultaes tipográfiques y la semeyanza ente los símbolos, la so propuesta nun foi bien recibida y cayó nel olvidu rápido.
Dellos matemáticos proponen declarar el 2 de xunetu de 2018 como'l día .
Cuestiones abiertes sobre e
Nun se sabe si e ye a cencielles normal en base 10 (o dalguna otra base). Esto ye, que cada unu de los diez díxitos del sistema decimal tenga la mesma probabilidá d'apaición nuna espansión decimal.
Nun se sabe si ye trascendente
Nun se sabe si e son irracionales. Sábese que nun son raigaños de polinomios de grau inferior a nueve y con coeficientes enteros del orde 10⁹.[53][54]
El conteníu d'esti artículu incorpora material d'una entrada de la Enciclopedia Libre Universal, espublizada en castellán baxo la llicencia Creative Commons Compartir-Igual 3.0.
↑Arias Cabezas, José María; Maza Sáez, Ildefonso (2008). «Aritmética y Álgebra», Matemátiques 1 (en castellanu). Grupu Editorial Bruño, Sociedá Llindada, páx. 19. ISBN 9788421659854.
↑Esta forma de definir la función llogaritmu natural, el númberu e, la función esponencial, etc. puede atopase en Cálculu Infinitesimal 2ª edición, cap. 17 (p. 465) de Michael Spivak, Reverté o en Calculus 2ª edición, cap. 6 (p. 277) de Tom Apostol, Reverté.
↑Olivier, Théodore (1845). «Quelques applications des projections coniques ou centrales et des projections cylindriques», Complements de geometrie descriptive. París: Carilian-Goeury et Dalmont, páx. 445.
↑Roger Cotes (1714) "Logometria," Philosophical Transactions of the Royal Society of London, 29 (338) : 5-45; see especially the bottom of page 10. From page 10: "Porru eadem ratio est inter 2,718281828459 &c et 1, … " (Furthermore, the same ratio is between 2.718281828459… and 1, … )
↑Leonhard Euler, Introductio in Analysin Infinitorum (Lausanne, Switzerland: Marc Michel Bousquet & Co., 1748), volume 1, page 90.
↑William Shanks, Contributions to Mathematics, … (London, England: G. Bell, 1853), page 89.