Read other articles:
جان بول يونتشا معلومات شخصية الميلاد 15 مايو 1983 (العمر 40 سنة)ياوندي الطول 1.82 م (5 قدم 11 1⁄2 بوصة) مركز اللعب مهاجم الجنسية الكاميرون مسيرة الشباب سنوات فريق Sable FC (Cameroon) [الإنجليزية] المسيرة الاحترافية1 سنوات فريق م. (هـ.) 2001–2002 Tiko United [الإنجليزية] 14 (0) ...
Портрет Леонелло д'Есте Ritratto di Leonello d'Este Автор Пізанелло Час створення 1441 Розміри 28 × 19 см Матеріал дошка Техніка темпера Місцезнаходження Академія Каррара (Бергамо) «Портрет Леонелло д'Есте» — картина італійського художника Пізанелло, написана у 1441 році, на якій зображ
Radio station in St. George, Utah KFUR-LPSt. George, UtahFrequency101.1 MHzBrandingEstéreo ÚnicaProgrammingFormatSpanish VarietyOwnershipOwnerLatinos Unidos BroadcastingHistoryFirst air dateMarch 31st, 2003Former call signsKOEZ-LP (2001-2013)Former frequencies105.1 MHz (2001-2012)Technical informationFacility ID123829ClassL1ERP20 wattsHAAT125.1 metersTransmitter coordinates37°3′48″N 113°34′23″W / 37.06333°N 113.57306°W / 37.06333; -113.57306LinksWebsiteww...
اضغط هنا للاطلاع على كيفية قراءة التصنيف الهضمونية العقديةPeptostreptococcus الهضمونية العقدية تنمو في سلاسل. المرتبة التصنيفية جنس التصنيف العلمي المملكة: بكتيريا الشعبة: متينات الجدار الطائفة: مطثية الرتبة: كلوستريدياليس الفصيلة: مطثاوية الجنس: الهضمونية العقديةPeptostreptococcus ...
Imperial unit and U.S. customary unit of area This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Square foot – news · newspapers · books · scholar · JSTOR (February 2020) (Learn how and when to remove this template message) Comparison of 1 square foot with some Imperial and metric units of area The square foot ...
У этого термина существуют и другие значения, см. Военный мемориал (значения). ПамятникВоенный мемориал в КранджиSingapore War Memorial, KranjiTanah Perkuburan Perang Kranji克兰芝阵亡战士公坟கிராஞ்சி போர் நினைவு 1°24′44″ с. ш. 103°45′21″ в. д.HGЯO Страна Сингапур Город Сингапур Архит...
Temporada 2009 de la NFL Temporada regular Duración 10 de septiembre de 2009 al3 de enero de 2010 Playoffs Fecha de comienzo 9 de enero de 2010 Super Bowl XLIV Fecha 7 de febrero de 2010 Sede Sun Life StadiumMiami Gardens, Florida Campeones New Orleans Saints Pro Bowl Fecha 31 de enero de 2010 Sede Dolphin StadiumMiami Gardens, Florida Temporadas de la NFL ← 2008 • 2010 → La temporada 2009 de la NFL fue la 90.ª temporada de la NFL, la liga de fútbol americano más important...
Untuk tumbuhan bernama sama, lihat Cincau (tumbuhan). Cincau hitam Cincau[1] (Hanzi: 仙草; Pinyin: xiāncǎo; Hanzi: 清草; Pe̍h-ōe-jī: chhin-chháu) adalah penganan semacam agar-agar yang dibuat dari daun beberapa jenis tumbuhan. Agar-agar cincau merupakan gel yang diperoleh dari perendaman daun (atau organ lain) tumbuhan cincau dalam air. Gel terbentuk karena daun tumbuhan tersebut mengandung karbohidrat yang mampu mengikat molekul-molekul air. Kata cincau send...
Fictional character from Death Note Fictional character MelloDeath Note characterMello, as drawn by Takeshi ObataFirst appearanceChapter 59: Zero (零, Rei)Last appearanceChapter 99: Two (二人, Futari)Created byTsugumi OhbaTakeshi ObataVoiced byJapanese Nozomu Sasaki[1] English David Hurwitz[2]Portrayed byMio YūkiIn-universe informationFull nameMihael KeehlAliasMelloMGenderMale Mihael Keehl (Japanese: ミハエル・ケール, Hepburn: Mihaeru Kēru), universally referred t...
2023 novel by Jessica George Maame AuthorJessica GeorgeLanguageEnglishGenreFictionPublished2023PublisherSt. Martin's Press Maame is a 2023 literary fiction novel written by Jessica George. George's debut novel, was published in 2023 by St. Martin's Press.[1][2][3] The novel was named the February 2023 book club pick on The Today Show.[4][5] Plot Maddie, a young woman in London, struggles to balance her life as caretaker of her critically ill father, her...
American magazine published from 1899 to 1929 Everybody's MagazineCover of the November 1914 edition, in which George Bernard Shaw's Pygmalion began its serialization.Founded1899Final issueMarch 1929CountryUnited StatesBased inNew York City Everybody's Magazine was an American magazine published from 1899 to 1929.[1] The magazine was headquartered in New York City.[2] History and profile The magazine was founded by Philadelphia merchant John Wanamaker in 1899, though he had li...
Season 17 of American television series Season of television series Top Chef: All-Stars L.A.Season 17Hosted byPadma LakshmiJudgesTom ColicchioGail SimmonsNo. of contestants15WinnerMelissa KingRunners-upBryan VoltaggioStephanie CmarLocationLos Angeles, CaliforniaFinals venueItalyFan FavoriteMelissa King Country of originUnited StatesNo. of episodes14ReleaseOriginal networkBravoOriginal releaseMarch 19 (2020-03-19) –June 18, 2020 (2020-06-18)Season chronology← PreviousKe...
Further information: MF Doom discography MF DOOM in 2008 The following list is a discography of production by MF DOOM, a British-American hip hop producer and rapper. It includes a list of songs produced, co-produced and remixed by year, album and title. 1999 MF DOOM – Operation: Doomsday 01. The Time We Faced Doom (skit) 02. Doomsday 03. Rhymes Like Dimes (featuring Cucumber Slice) 04. The Finest (featuring Tommy Gunn) 05. Back In The Days (skit) 06. Go With the Flow 07. Tick, Tick... (fea...
1922 fantasy novel set on highly-fictionalized Mercury by E. R. Eddison This article is about the fantasy novel by E. R. Eddison. For the serpentine symbol, see Ouroboros. The Worm Ouroboros Original CoverAuthorE. R. EddisonIllustratorKeith HendersonCountryUnited KingdomLanguageEnglishSeriesThe Zimiamvian SeriesGenreFantasyPublisherJonathan CapePublication date1922Media typePrint (Hardback)Pagesxiv, 448 The Worm Ouroboros is a heroic high fantasy novel by English writer E. R. Eddison, fi...
← 2012 • • 2017 → Elecciones generales de 2014475 escaños de la Cámara de Representantes238 escaños necesarios para la mayoría absoluta Fecha Domingo 14 de diciembre de 2014 Tipo General Ver lista 295 escaños elegidos mediante escrutinio mayoritario uninominal en circunscripciones de un solo miembro (SMC). 180 escaños elegidos mediante escrutinio mayoritario plurinominal en circunscripciones de múltiples miembros (MMC). Período 2014-2018 Demograf...
В Википедии есть статьи о других людях с фамилией Аллен. Ребекка Алленангл. Rebecca Allen Нью-Йорк Либерти — № 9 Позиция Атакующий защитник / Лёгкий форвард Прозвища Спида (англ. Spida) Рост 188 см Вес 74 кг Гражданство Австралия Дата рождения 6 ноября 1992(1992-11-06) (31 год) Мес...
City in Ziguinchor Region, Senegal Commune in Ziguinchor Region, SenegalZiguinchor زيغينكورCommuneDowntown of ZiguinchorZiguinchorLocation within SenegalCoordinates (region:SN_type:city): 12°33′43″N 16°17′2″W / 12.56194°N 16.28389°W / 12.56194; -16.28389Country SenegalRegionZiguinchor RegionDepartementZiguinchorGovernment • MayorOusmane SonkoArea • Commune9 km2 (3 sq mi)Elevation12 m (39 ft)P...
Mathematical tree in the hyperbolic plane A hyperbolic tree (often shortened as hypertree) is an information visualization and graph drawing method inspired by hyperbolic geometry. A basic hyperbolic tree. Nodes in focus are placed in the center and given more room, while out-of-focus nodes are compressed near the boundaries. Focusing on a different node brings it and its children to the center of the disk, while uninteresting portions of the tree are compressed. Displaying hierarchical data ...
Tupai merah Status konservasi Risiko Rendah (IUCN 3.1)[1] Klasifikasi ilmiah Kerajaan: Animalia Filum: Chordata Kelas: Mammalia Ordo: Scandentia Famili: Tupaiidae Genus: Tupaia Spesies: T. splendidula Nama binomial Tupaia splendidulaGray, 1865 Wilayah habitat Tupai merah Tupai merah (Latin: Tupaia splendidula) adalah tupai berwarna coklat-merah tua pada punggungnya, dan merah kehitam-hitaman pada permukaan perutnya.[1][2] Deskripsi Ciri fisik tupai merah, pad...
Angular eccentricity α (alpha) and linear eccentricity (ε). Note that OA=BF=a. Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It may be defined in terms of the eccentricity, e, or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis): α = sin − 1 e = cos − 1 ( b a ) . {\displaystyle \alpha =\sin ^{-1}\!e=\cos ^{-1}\left({\frac {b}{a}}\r...