Watson's lemma

In mathematics, Watson's lemma, proved by G. N. Watson (1918, p. 133), has significant application within the theory on the asymptotic behavior of integrals.

Statement of the lemma

Let be fixed. Assume , where has an infinite number of derivatives in the neighborhood of , with , and .

Suppose, in addition, either that

where are independent of , or that

Then, it is true that for all positive that

and that the following asymptotic equivalence holds:

See, for instance, Watson (1918) for the original proof or Miller (2006) for a more recent development.

Proof

We will prove the version of Watson's lemma which assumes that has at most exponential growth as . The basic idea behind the proof is that we will approximate by finitely many terms of its Taylor series. Since the derivatives of are only assumed to exist in a neighborhood of the origin, we will essentially proceed by removing the tail of the integral, applying Taylor's theorem with remainder in the remaining small interval, then adding the tail back on in the end. At each step we will carefully estimate how much we are throwing away or adding on. This proof is a modification of the one found in Miller (2006).

Let and suppose that is a measurable function of the form , where and has an infinite number of continuous derivatives in the interval for some , and that for all , where the constants and are independent of .

We can show that the integral is finite for large enough by writing

and estimating each term.

For the first term we have

for , where the last integral is finite by the assumptions that is continuous on the interval and that . For the second term we use the assumption that is exponentially bounded to see that, for ,

The finiteness of the original integral then follows from applying the triangle inequality to .

We can deduce from the above calculation that

as .

By appealing to Taylor's theorem with remainder we know that, for each integer ,

for , where . Plugging this in to the first term in we get

To bound the term involving the remainder we use the assumption that is continuous on the interval , and in particular it is bounded there. As such we see that

Here we have used the fact that

if and , where is the gamma function.

From the above calculation we see from that

as .

We will now add the tails on to each integral in . For each we have

and we will show that the remaining integrals are exponentially small. Indeed, if we make the change of variables we get

for , so that

If we substitute this last result into we find that

as . Finally, substituting this into we conclude that

as .

Since this last expression is true for each integer we have thus shown that

as , where the infinite series is interpreted as an asymptotic expansion of the integral in question.

Example

When , the confluent hypergeometric function of the first kind has the integral representation

where is the gamma function. The change of variables puts this into the form

which is now amenable to the use of Watson's lemma. Taking and , Watson's lemma tells us that

which allows us to conclude that

References

Read other articles:

كلية ضباط الاحتياط الدولة  مصر الولاء  مصر النوع كلية الدور تعليمي جزء من القوات المسلحة المصرية المقر الرئيسي فايد، محافظة الإسماعيلية شعار نصي إيمان * وطن * تضحية القادة القائد الحالي لواء أركان حرب / بهاء السيد عبدالرحيم تعديل مصدري - تعديل   كلية الضباط الاحتياط ...

 

Школа виживанняOne Tree Hill Тип телесеріалТелеканал(и) The WB (США) (2003-2006),The CW (США) (2006-2012),1+1 (Україна)Дистриб'ютор(и) Warner Bros. Television Studios і HuluЖанр ДрамаТривалість серії 43 хв.Тривалість 41 хв.Компанія Warner BrothersКерівник проєкту Mark SchwahndІдея Марк ШвонУ головних ролях Чед Майкл М...

 

Cet article est une ébauche concernant une localité anglaise. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. HolwellGéographiePays  Royaume-UniNation constitutive AngleterreRégion Angleterre de l'EstComté cérémonial HertfordshireDistrict non métropolitain North HertfordshireSuperficie 2,19 km2Coordonnées 51° 59′ 00″ N, 0° 18′ 00″ ODémographiePopulation 361 h...

Die Zirkusfamilie Althoff ist eine der ältesten und größten Artisten- und Zirkusdynastien der Welt. Ihr Ursprung lässt sich bis in das Jahr 1660 zurückverfolgen. Die Dynastie teilte sich in mehr als 70 Unternehmen, bis heute reisen mehrere Zirkusse unter dem Namen „Althoff“. Inhaltsverzeichnis 1 Geschichte 1.1 Ursprung 1.2 Namenswandlung 1.3 Expansionsphase 1.4 Besonderheiten 2 Familie 2.1 Urstammlinie 2.2 Celler Linie 2.3 Märkische Linie 2.4 Rheinische Linie 2.4.1 Badener Linie 2.4...

 

International border Map of the Burkina Faso-Togo border The Burkina Faso–Togo border is 131 km (81 m) in length and runs from the tripoint with Ghana in the west to the tripoint with Benin in the east.[1] Description The border starts in the west at the tripoint with Ghana, and continues in a straight line orientated to the south-east. A short section then runs southwards along the Sansargou river, before a straight line veers to the north-east up to the 11th parallel north; t...

 

Masjid Tua Patimburak (dibangun k. 1870) di Fakfak, Papua Barat. Islam di Papua Barat adalah agama minoritas yang dipeluk oleh 38,06% penduduk provinsi ini,dari keseluruhan jiwa 1.150.000 penduduk berdasarkan sensus tahun 2021.[1] Islam diperkirakan masuk ke Papua Barat melalui beberapa kerajaan di Kepulauan Maluku, yang kekuasaannya mencapai bagian barat Pulau Papua. Populasi muslim Papua Barat saat ini terkonsentrasi di wilayah kepulauan dan pesisir, seperti di Raja Ampat, Sorong, T...

У Вікіпедії є статті про інших людей із прізвищем Грищенко. Роман Сергійович Грищенко  Полковник Роман Сергійович ГрищенкоРоман Грищенко в липні 2022 року Командир 127-ї окремої бригади Сил територіальної оборони України Нині на посадіНа посаді з березень 2022 14-й Голова С...

 

1953 film by Roy Rowland This article is about 1953 Western film. For the 2018 indie video game, see Moonlighter. The MoonlighterFilm posterDirected byRoy RowlandScreenplay byNiven BuschProduced byJoseph BernhardStarringBarbara StanwyckFred MacMurray Ward BondCinematographyBert GlennonEdited byTerry O. MorseMusic byHeinz RoemheldColor processBlack and whiteProductioncompaniesJoseph Bernhard ProductionsAbtcon PicturesDistributed byWarner Bros.Release date September 19, 1953 (195...

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article reads like a press release or a news article and may be largely based on routine coverage. Please help improve this article and add independent sources. (January 2013) This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and ...

United States historic placeCentral Fire StationU.S. National Register of Historic PlacesU.S. Historic districtContributing property Location801 Crockett St., Shreveport, LouisianaCoordinates32°30′32″N 93°45′03″W / 32.50889°N 93.75083°W / 32.50889; -93.75083 (Central Fire Station)Arealess than one acreBuilt1922Built byWerner, W.H.ArchitectKing, Clarence W.Architectural styleBeaux Arts, Renaissance, Italian RenaissancePart ofShreveport Commercia...

 

Maurerische Trauermusiken do mineur 477/479a Musique funèbre maçonnique Mozart avec sa sœur « Nannerl » et son père Leopold vers 1780. Genre Musique maçonnique Nb. de mouvements 1 Musique Wolfgang Amadeus Mozart Effectif orchestre Durée approximative env. 7 minutes Dates de composition novembre 1785 à Vienne Partition autographe Bibliothèque d'État de Berlin Création 9 décembre 1785Vienne modifier  La Maurerische Trauermusik (ou Musique funèbre maçonnique) e...

 

Japanese ski jumper This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2015) (Learn how and when to remove this template message) Daiki Itō伊東 大貴Ito in 2011CountryJapanBorn (1985-12-27) 27 December 1985 (age 37)[1]Shimokawa, Hokkaidō, Japan[1]Height1.72 m (5 ft 7+1⁄2 in)[1]Ski clubYukijirushi Ny...

481-й конвойний полк На службі 27 квітня 1967 — 19 березня 1993Країни  СРСР → УкраїнаВид Внутрішні військаГарнізон/Штаб  Українська РСР,м. Вінниця 481-й конвойний полк (481 КП, в/ч 6689) — з'єднання Внутрішніх військ МВС СРСР, що існувало у 1967—1992 роках. Місце дислокації&#...

 

Interiör från ett mejeri i Fontain, Frankrike. Rausjødalens mejeri, Norge. Ett mejeri är en fabrik där mjölk förädlas till i första hand livsmedelsprodukter. I proceduren ingår separering, pastörisering, standardisering och homogenisering. Mjölk kan i ett mejeri förädlas till filmjölk, yoghurt, smör, grädde, ost, messmör och kvarg. Mjölken kommer oftast ifrån nötkreatur men mjölkens näringssammansättning har lett till att en rad djur används i samma syfte i andra län...

 

PAN Thuistenue Uittenue Panama is een van de deelnemende landen aan het Wereldkampioenschap voetbal 2018 in Rusland. Het is de eerste deelname voor het land. Hernán Darío Gómez is de bondscoach. Het eerste doelpunt ooit, is gemaakt door de verdediger Felipe Baloy. Dit is gemaakt in de wedstrijd tegen Engeland. Panama verloor alle wedstrijden in de groepsfase, waardoor het laatste eindigde en zodoende uitgeschakeld. Kwalificatie Wereldkampioenschap voetbal 2018 (kwalificatie CONCACAF) Kwali...

Part of the First War of Scottish Independence This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (December 2018) (Learn how and when to remove this template message) Battle of DunbarPart of the First War of Scottish IndependenceDate27 April 1296LocationSpott, near Dunbar, East Lothian, ScotlandResult English victoryBelligerents Kingdom of Scotland Kingdom of Eng...

 

Ocna SibiuluiKota Lambang kebesaranLetak Ocna SibiuluiNegara RumaniaCountyCounty SibiuStatusKotaPemerintahan • Wali kotaIoan Balteș (Partidul Social Democrat)Luas • Total87,46 km2 (3,377 sq mi)Populasi (2011) • Total3.372Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST) Populasi historis Tahun JumlahPend.  ±%   1912 4.048—     1977 5.048+24.7% 1992 4.423−12.4% 2002 4.184...

 

Election for the governorship of the U.S. state of Ohio 1970 Ohio gubernatorial election ← 1966 November 3, 1970 1974 →   Nominee John J. Gilligan Roger Cloud Party Democratic Republican Popular vote 1,725,560 1,382,659 Percentage 54.19% 43.42% County resultsGilligan:      40-50%      50-60%      60-70% Cloud:      40-50%      50-60% ...

Réplica de la HMS Surprise en el Museo Marítimo de San Diego, basada en la HMS Rose y usada en la película Master and Commander. La serie de libros Aubrey-Maturin es una secuencia de 21 libros escrita por Patrick O'Brian que transcurre durante las guerras napoleónicas. La serie se centra en la amistad entre el capitán Jack Aubrey de la Royal Navy y su amigo el cirujano, naturalista y agente secreto hispano-irlandés Stephen Maturin. La última de las novelas, publicada en 2004, ha quedad...

 

AwardNew Zealand Gallantry StarObverse of the medalTypeMilitary decoration.Awarded foracts of outstanding gallantry in situations of danger while involved in war and warlike operational service (including peacekeeping).Description45mm, (Obverse) faceted silver eight-pointed star of equal points surmounted by the Royal Crown and fern frond wreath emblem; (reverse) inscribed FOR GALLANTRY - MO TE TOANGA. With ring suspension.Presented byNew ZealandEligibilityNew Zealand and allied forces.Statu...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!