WASP-72 (also known as CD-30 1019 and officially named Diya) is the primary of a binary star system. It is an F7 class dwarf star, with an internal structure just on the verge of the Kraft break.[5] It is orbited by a planet WASP-72b. The age of WASP-72 is younger than the Sun at 3.55±0.82 billion years.[4]
The primary seems to have UV-opaque matter in the line-of-sight, which may originate from atmosphere escaping from WASP-72b or from an unknown object in the interstellar medium.[6] WASP-72 was named Diya in 2019.[7]
A faint stellar companion WASP-72B was discovered in 2020 at a projected separation of 281 AU. It may still be a false positive, with a probability of 0.02%.[4]
Planetary system
The transitinghot Jupiterexoplanet orbiting WASP-72 was discovered by WASP in 2012.[8] The planetary orbit is well aligned to the equatorial plane of the star, with misalignment equal to −7°+11° −12°.[5] Despite the close proximity of the planet to the parent star, orbital decay was not detected as of 2020.[9] The planetary equilibrium temperature is 2210+120 −130K,[8] compatible with the measured dayside temperature of 2098+335 −364K.[10]
WASP-72b was named "Cuptor" in 2019 by Mauritian amateur astronomers as part of the NameExoWorlds contest.[7]
^ abWong, Ian; Shporer, Avi; Daylan, Tansu; Benneke, Björn; Fetherolf, Tara; Kane, Stephen R.; Ricker, George R.; Vanderspek, Roland; Latham, David W.; Winn, Joshua N.; Jenkins, Jon M.; Boyd, Patricia T.; Glidden, Ana; Goeke, Robert F.; Sha, Lizhou; Ting, Eric B.; Yahalomi, Daniel (2020), "Systematic phase curve study of known transiting systems from year one of the TESS mission", The Astronomical Journal, 160 (4): 155, arXiv:2003.06407, Bibcode:2020AJ....160..155W, doi:10.3847/1538-3881/ababad, S2CID212717799
^ abcAddison, B. C.; Wang, Songhu; Johnson, M. C.; Tinney, C. G.; Wright, D. J.; Bayliss, D. (2018), "Stellar Obliquities and Planetary Alignments (SOPA). I. Spin-orbit measurements of three transiting hot Jupiters: WASP-72b, WASP-100b, and WASP-109b", The Astronomical Journal, 156 (5): 197, arXiv:1809.00314, Bibcode:2018AJ....156..197A, doi:10.3847/1538-3881/aade91, S2CID67819738
^ abGillon, M.; Anderson, D. R.; Collier-Cameron, A.; Doyle, A. P.; Fumel, A.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Montalban, J.; Pepe, F.; Pollacco, D.; Queloz, D.; Segransan, D.; Smith, A. M. S.; Smalley, B.; Southworth, J.; Triaud, A. H. M. J.; Udry, S.; West, R. G. (2012), "WASP-64b and WASP-72b: two new transiting highly irradiated giant planets", Astronomy & Astrophysics, 552: A82, arXiv:1210.4257, Bibcode:2013A&A...552A..82G, doi:10.1051/0004-6361/201220561, S2CID53687206
^Patra, Kishore C.; Winn, Joshua N.; Holman, Matthew J.; Gillon, Michael; Burdanov, Artem; Jehin, Emmanuel; Delrez, Laetitia; Pozuelos, Francisco J.; Barkaoui, Khalid; Benkhaldoun, Zouhair; Narita, Norio; Fukui, Akihiko; Kusakabe, Nobuhiko; Kawauchi, Kiyoe; Terada, Yuka; Bouma, L. G.; Weinberg, Nevin N.; Broome, Madelyn (2020), "The continuing search for evidence of tidal orbital decay of hot Jupiters", The Astronomical Journal, 159 (4): 150, arXiv:2002.02606, Bibcode:2020AJ....159..150P, doi:10.3847/1538-3881/ab7374, S2CID211066260