Unicity distance

In cryptography, unicity distance is the length of an original ciphertext needed to break the cipher by reducing the number of possible spurious keys to zero in a brute force attack. That is, after trying every possible key, there should be just one decipherment that makes sense, i.e. expected amount of ciphertext needed to determine the key completely, assuming the underlying message has redundancy.[1]

Claude Shannon defined the unicity distance in his 1949 paper "Communication Theory of Secrecy Systems".[2]

Consider an attack on the ciphertext string "WNAIW" encrypted using a Vigenère cipher with a five letter key. Conceivably, this string could be deciphered into any other string—RIVER and WATER are both possibilities for certain keys. This is a general rule of cryptanalysis: with no additional information it is impossible to decode this message.

Of course, even in this case, only a certain number of five letter keys will result in English words. Trying all possible keys we will not only get RIVER and WATER, but SXOOS and KHDOP as well. The number of "working" keys will likely be very much smaller than the set of all possible keys. The problem is knowing which of these "working" keys is the right one; the rest are spurious.

Relation with key size and possible plaintexts

In general, given particular assumptions about the size of the key and the number of possible messages, there is an average ciphertext length where there is only one key (on average) that will generate a readable message. In the example above we see only upper case English characters, so if we assume that the plaintext has this form, then there are 26 possible letters for each position in the string. Likewise if we assume five-character upper case keys, there are K=265 possible keys, of which the majority will not "work".

A tremendous number of possible messages, N, can be generated using even this limited set of characters: N = 26L, where L is the length of the message. However, only a smaller set of them is readable plaintext due to the rules of the language, perhaps M of them, where M is likely to be very much smaller than N. Moreover, M has a one-to-one relationship with the number of keys that work, so given K possible keys, only K × (M/N) of them will "work". One of these is the correct key, the rest are spurious.

Since M/N gets arbitrarily small as the length L of the message increases, there is eventually some L that is large enough to make the number of spurious keys equal to zero. Roughly speaking, this is the L that makes KM/N=1. This L is the unicity distance.

Relation with key entropy and plaintext redundancy

The unicity distance can equivalently be defined as the minimum amount of ciphertext required to permit a computationally unlimited adversary to recover the unique encryption key.[1]

The expected unicity distance can then be shown to be:[1]

where U is the unicity distance, H(k) is the entropy of the key space (e.g. 128 for 2128 equiprobable keys, rather less if the key is a memorized pass-phrase). D is defined as the plaintext redundancy in bits per character.

Now an alphabet of 32 characters can carry 5 bits of information per character (as 32 = 25). In general the number of bits of information per character is log2(N), where N is the number of characters in the alphabet and log2 is the binary logarithm. So for English each character can convey log2(26) = 4.7 bits of information.

However the average amount of actual information carried per character in meaningful English text is only about 1.5 bits per character. So the plain text redundancy is D = 4.7 − 1.5 = 3.2.[1]

Basically the bigger the unicity distance the better. For a one time pad of unlimited size, given the unbounded entropy of the key space, we have , which is consistent with the one-time pad being unbreakable.

Unicity distance of substitution cipher

For a simple substitution cipher, the number of possible keys is 26! = 4.0329 × 1026 = 288.4, the number of ways in which the alphabet can be permuted. Assuming all keys are equally likely, H(k) = log2(26!) = 88.4 bits. For English text D = 3.2, thus U = 88.4/3.2 = 28.

So given 28 characters of ciphertext it should be theoretically possible to work out an English plaintext and hence the key.

Practical application

Unicity distance is a useful theoretical measure, but it does not say much about the security of a block cipher when attacked by an adversary with real-world (limited) resources. Consider a block cipher with a unicity distance of three ciphertext blocks. Although there is clearly enough information for a computationally unbounded adversary to find the right key (simple exhaustive search), this may be computationally infeasible in practice.

The unicity distance can be increased by reducing the plaintext redundancy. One way to do this is to deploy data compression techniques prior to encryption, for example by removing redundant vowels while retaining readability. This is a good idea anyway, as it reduces the amount of data to be encrypted.

Ciphertexts greater than the unicity distance can be assumed to have only one meaningful decryption. Ciphertexts shorter than the unicity distance may have multiple plausible decryptions. Unicity distance is not a measure of how much ciphertext is required for cryptanalysis,[why?] but how much ciphertext is required for there to be only one reasonable solution for cryptanalysis.

References

  1. ^ a b c d Alfred J. Menezes; Paul C. van Oorschot; Scott A. Vanstone. "Chapter 7 - Block Ciphers" (PDF). Handbook of Applied Cryptography. p. 246.
  2. ^ Deavours, C.A. (1977). "Unicity Points in Cryptanalysis". Cryptologia. 1 (1): 46–68. doi:10.1080/0161-117791832797. ISSN 0161-1194.

Read other articles:

هذه المقالة بحاجة لصندوق معلومات. فضلًا ساعد في تحسين هذه المقالة بإضافة صندوق معلومات مخصص إليها. هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين هذه المقالة بإضافة وصلات إلى المقالات المتعلقة بها الموجودة في ال...

 

Hicksbeachia Classificação científica Reino: Plantae Divisão: Magnoliophyta Classe: Magnoliopsida Ordem: Proteales Família: Proteaceae Género: Hicksbeachia Espécies Ver texto. Outros projetos Wikimedia também contêm material sobre este tema: Imagens e media no Commons Diretório no Wikispecies Commons Wikispecies Hicksbeachia é um género botânico pertencente à família Proteaceae[1]. Este artigo sobre dicotiledóneas, integrado no Projeto Plantas é um esboço. Você pode ajudar ...

 

Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikembangkan, artikel ini akan dihapus. Untuk kegunaan lain, lihat Morava (disambiguasi). MoravaSungai MoravaLokasiNegaraRepublik Ceko, Slowakia, AustriaRegionPardubice, Olomouc, Zlín, Region Moravia Selatan, Trnava, Bratislava, Austria HilirKotaOlomouc, Kroměříž, Uherské Hradiště, Hodonín, Holíč, Bratislava, MarcheggCiri-ciri fisikHulu sungai...

Forêt d'Ashdown La forêt d’Ashdown en automne. Localisation Coordonnées 51° 02′ 31″ nord, 0° 04′ 01″ est Pays Angleterre Comté Sussex de l'Est Géographie Superficie 2 630 ha Compléments Protection Réseau Natura 2000 (Zone de protection spéciale), Site of Special Scientific Interest Statut Parc national Administration National Park Authority Essences Pins, Bouleau, Chênes Géolocalisation sur la carte : Angleterre Forêt d'A...

 

2009 edition of the EuroBasket Women EuroBasket 2009 Women32nd FIBA European Women'sBasketball ChampionshipTournament detailsHost nationLatviaDatesJune 7 – 20Teams16Venues3 (in 3 host cities)Champions France (2nd title)MVP Evanthia MaltsiTournament leaders PlayersTeamsPoints Evanthia Maltsi 22.6  Latvia 69.2Rebounds Yelena Leuchanka 9.2  Russia 42.8Assists Birsel Vardarlı 4.7  Belarus 14.2 Official websiteOfficial website< 2007 2011 > The ...

 

Heritage site in Darlington, Tasmania Darlington Probation StationView of one of the buildings (the Commissariat Store) within the Darlington Probation Station precinct.TypeNational ParkLocationMaria IslandCoordinates42°34′57″S 148°04′12″E / 42.58250°S 148.07000°E / -42.58250; 148.07000Area2329.28 hectares[1]StatusAustralian National Heritage ListWorld Heritage listWebsitehttp://www.parks.tas.gov.au/index.aspx?base=2707 UNESCO World Heritage SiteTyp...

Pearl V PuriLahirPearl V Puri10 Juli 1989 (umur 34)Chhindwara, IndiaKebangsaanIndianPekerjaanaktor, penyanyiTahun aktif2012–sekarang Pearl V Puri[1] adalah aktor televisi India yang dikenal bermain sebagai Mahir Sehgal di Naagin 3 dan Raghbir Malhotra di Bepanah Pyaar. Kehidupan awal Puri lahir di Chhindwara (MP) & dibesarkan di Agra (UP). Ketika dia memutuskan untuk menjadi aktor, ayahnya[2] menentang keputusannya. Ayahnya juga telah memotong semua ikatan deng...

 

Neighborhood of Omaha, Nebraska, U.S. Part of a series onAfrican Americans in Omaha Historic places Notable people Neighborhood Museum Music Racial tension Timeline of racial tension Riots and civil unrest Civil Rights Movement vte The Near North Side of Omaha, Nebraska is the neighborhood immediately north of downtown. It forms the nucleus of the city's African-American community, and its name is often synonymous with the entire North Omaha area. It is bordered by Cuming Street on the south,...

 

State highway in Tennessee, United States State Route 62SR 62; primary in red, secondary in blueRoute informationMaintained by TDOTLength87.5 mi (140.8 km)ExistedOctober 1, 1923[1]–presentMajor junctionsWest end SR 84 in MontereyMajor intersections US 127 in Clarkrange US 27 in Wartburg SR 61 / SR 330 in Oliver Springs SR 95 in Oak Ridge SR 162 in Solway I-640 / I-75 in Knoxville I-40 / I-275 in KnoxvilleEast ...

Bagian dari seri tentangGereja KatolikBasilika Santo Petrus, Kota Vatikan Ikhtisar Paus (Fransiskus) Hierarki Sejarah (Lini Masa) Teologi Liturgi Sakramen Maria Latar Belakang Yesus Penyaliban Kebangkitan Kenaikan Gereja Perdana Petrus Paulus Bapa-Bapa Gereja Sejarah Gereja Katolik Sejarah Lembaga Kepausan Konsili Ekumene Magisterium Empat Ciri Gereja Satu Gereja Sejati Suksesi Apostolik Organisasi Takhta Suci Kuria Romawi Dewan Kardinal Konsili Ekumene Lembaga Keuskupan Gereja Latin Gereja-G...

 

Formal record of the financial activities and position of a business, person, or other entity Part of a series onAccounting Historical costConstant purchasing powerManagementTax Major typesAuditBudgetCostForensicFinancialFundGovernmentalManagementSocialTax Key conceptsAccounting periodAccrualConstant purchasing powerEconomic entityFair valueGoing concernHistorical costMatching principleMaterialityRevenue recognitionUnit of account Selected accountsAssetsCashCost of goods soldDepreciation ...

 

Thích merupakan sebuah nama penghargaan Buddha. Quảng Đức, merupakan atribut deskriptif meritori; lihat nama dharma. Thích Quảng ĐứcNama lainBo Tat Thich Quang Duc(Bodhisattva Thich Quang Duc)Informasi pribadiLahir1897Hoi Khanh, Indochina PrancisMeninggal11 Juni 1897 – 1963; umur 65–66 tahunSaigon, Vietnam SelatanSebab meninggalLuka bakar karena bakar diriAgamaBuddhismeNama lainBo Tat Thich Quang Duc(Bodhisattva Thich Quang Duc)Kedudukan seniorLokasiVietnam S...

1961 film by Edward L. Cahn Gun StreetTheatrical release posterDirected byEdward L. CahnWritten bySam Freedle(as Sam C. Freedle)Produced byRobert E. KentStarringJames BrownJean WillesJohn ClarkeCinematographyGilbert WarrentonEdited byKenneth G. Crane(as Kenneth Crane)Music byRichard LaSalle(as Richard La Salle)ProductioncompanyZenith PicturesDistributed byUnited ArtistsRelease dates November 5, 1961 (1961-11-05) (United States) November 22, 1961 (1961-11-22)&...

 

Australian reality television series The TraitorsAlso known asThe Traitors AustraliaGenre Reality Game show Based onDe Verradersby Marc PosDirected byGary DeansCreative directorBen SkinnerPresented byRodger CorserComposers Dinesh Wicks Adam Gock Anthony Ammar Rory Chenoweth Brontë Horder David Bruggeman Country of originAustraliaOriginal languageEnglishNo. of seasons2No. of episodes21ProductionExecutive producers AJ Johnson Lisa Fardy Producers Matt Lovkis Paul Soares Ciaran Flannery Product...

 

This is a list of New Hampshire covered bridges, old, new, and restored. There are 58 historic wooden covered bridges currently standing and assigned official numbers by the U.S. state of New Hampshire.[1] There are additional covered bridges extant in the state, some of which are on private property and not accessible to the public. The newest covered bridge known to have been constructed in the state is the Chester Covered Bridge, built in 2011.[2] Standing covered bridges A...

Lokomotif uap di los bundar milik Chicago and North Western Railway di depot kereta barang Chicago, Illinois, Desember 1942 Los bundar atau los bunder adalah sebuah bangunan yang digunakan oleh perusahaan kereta api untuk menyimpan lokomotif. Los bundar berukuran besar dan memiliki struktur melingkar atau setengah lingkaran yang biasanya terletak di sekitar atau dekat dengan pemutar rel. Fitur utama dari los bundar tradisional adalah pemutar rel tersebut yang memberikan akses ketika bangunan ...

 

2021年のシカゴ・ホワイトソックス成績 アメリカンリーグ地区1位ディビジョンシリーズ敗退本拠地都市 イリノイ州シカゴ ギャランティード・レート・フィールド球団組織オーナー ジェリー・ラインズドルフGM リック・ハーン監督 トニー・ラルーサ« 20202022 » テンプレートを表示 2021年のシカゴ・ホワイトソックス(2021 Chicago White Sox season)は、球団創設以来120...

 

ลิงก์ข้ามภาษาในบทความนี้ มีไว้ให้ผู้อ่านและผู้ร่วมแก้ไขบทความศึกษาเพิ่มเติมโดยสะดวก เนื่องจากวิกิพีเดียภาษาไทยยังไม่มีบทความดังกล่าว กระนั้น ควรรีบสร้างเป็นบทความโดยเร็...

Voce principale: Calcio Catania. Calcio CataniaStagione 1970-1971 Sport calcio Squadra Catania Allenatore Egizio Rubino Presidente Angelo Massimino Serie A16° (retrocessa in Serie B) Coppa ItaliaPrimo turno Coppa MitropaOttavi di finale Maggiori presenzeCampionato: Bernardis (30) Miglior marcatoreCampionato: Bonfanti (5) StadioCibali 1969-1970 1971-1972 Si invita a seguire il modello di voce Questa voce raccoglie le informazioni riguardanti il Calcio Catania nelle competizioni ufficial...

 

此條目需要編修,以確保文法、用詞、语气、格式、標點等使用恰当。 (2015年8月19日)請按照校對指引,幫助编辑這個條目。(幫助、討論) 爱彼迎AirbnbAirbnb驻加拿大多伦多办公室公司類型上市公司股票代號NASDAQ:ABNB成立2008年創辦人布萊恩·切斯基、喬·傑比亞、內森·布萊卡斯亞克 代表人物布萊恩·切斯基(執行長)喬·傑比亞(CPO)Nathan Blecharczyk(CTO)總部 美國...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!