Transition metal complexes of 1,10-phenanthroline ("phen") are coordination complexes containing one or more 1,10-phenanthrolineligands.[2] Complexes have been described for many transition metals. In almost all complexes, phen serves as a bidentate ligand, binding metal centers with the two nitrogen atoms. Examples include PtCl2(phen) and [Fe(phen)3]2+.
Homoleptic complexes
Several homoleptic complexes are known of the type [M(phen)3]2+. Particularly well studied is [Fe(phen)3]2+, called "ferroin." It can be used for the photometric determination of Fe(II).[3] It is used as a redox indicator with standard potential +1.06 V. The reduced ferrous form has a deep red colour and the oxidised form is light-blue.[4] The pink complex [Ni(phen)3]2+ has been resolved into its Δ and Λ isomers.[5]
It has long been known that some cationic metal-phen complexes intercalate into DNA.[8] These metallointercalators associate enantioselectively and exhibit distinctive optical properties.[9][10]
1,10-Phenanthroline is an inhibitor of metallopeptidases, with one of the first observed instances reported in carboxypeptidase A.[11] Inhibition of the enzyme occurs by removal and chelation of the metal ion required for catalytic activity, leaving an inactive apoenzyme. 1,10-Phenanthroline targets mainly zinc metallopeptidases, with a much lower affinity for calcium.[12]
Modified phen ligands
A variety of substituted derivatives of phen have been examined as ligands.[7][13] Substituents at the 2,9 positions confer protection for the attached metal, inhibiting the binding of multiple equivalents of the phenanthroline. Such bulky ligands also favor trigonal or tetrahedral coordination at the metal.[14] Phen itself form complexes of the type [M(phen)3]Cl2 when treated with metal dihalides (M = Fe, Co, Ni). By contrast, neocuproine and bathocuproine form 1:1 complexes such as [Ni(neocuproine)Cl2]2.[15]
Basicities of 1,10-Phenanthrolines and 2,2'-Bipyridine[16]
Complexes of phen and those of 2,2'-bipyridine (bipyr) are similar: the metal-ligand ensemble is planar, which facilitates electron delocalization. As a consequence of this delocalization, phen complexes often exhibit distinctive optical and redox properties. With respective pKa's of 4.86 and 4.3 for their conjugate acids, phenanthroline and bipy are of comparable basicity.[25] In phenanthroline, the two nitrogen donors are preorganized for chelation. According to one ligand ranking scale, phen is a weaker donor than bipy.[26]
References
^Grzesiak, Adam L.; Matzger, Adam J. (2007). "Selection and Discovery of Polymorphs of Platinum Complexes Facilitated by Polymer-Induced Heteronucleation". Inorganic Chemistry. 46 (2): 453–457. doi:10.1021/ic061323k. PMID17279824.
^Sammes, Peter G.; Yahioglu, Gokhan (1994). "1,10-Phenanthroline: A Versatile Ligand". Chemical Society Reviews. 23 (5): 327. doi:10.1039/CS9942300327.
^Bellér, G. B.; Lente, G. B.; Fábián, I. N. (2010). "Central Role of Phenanthroline Mono-N-oxide in the Decomposition Reactions of Tris(1,10-phenanthroline)iron(II) and -iron(III) Complexes". Inorganic Chemistry. 49 (9): 3968–3970. doi:10.1021/ic902554b. PMID20415494.
^George B. Kauffman; Lloyd T. Takahashi (1966). "Resolution of the tris-(1,10-Phenanthroline)nickel(II) Ion". Inorganic Syntheses. Vol. 5. pp. 227–232. doi:10.1002/9780470132395.ch60. ISBN978-0-470-13239-5.
^Armaroli N (2001). "Photoactive Mono- and Polynuclear Cu(I)-Phenanthrolines. A Viable Alternative to Ru(Ii)-Polypyridines?". Chemical Society Reviews. 30 (2): 113–124. doi:10.1039/b000703j.
^ abPallenberg A. J.; Koenig K. S.; Barnhart D. M. (1995). "Synthesis and Characterization of Some Copper(I) Phenanthroline Complexes". Inorganic Chemistry. 34 (11): 2833–2840. doi:10.1021/ic00115a009.
^Erkkila, Kathryn E.; Odom, Duncan T.; Barton, Jacqueline K. (1999). "Recognition and Reaction of Metallointercalators with DNA". Chemical Reviews. 99 (9): 2777–2796. doi:10.1021/cr9804341. PMID11749500.
^Bencini, Andrea; Lippolis, Vito (2010). "1,10-Phenanthroline: A Versatile Building block for the Construction of Ligands for Various Purposes". Coordination Chemistry Reviews. 254 (17–18): 2096–2180. doi:10.1016/j.ccr.2010.04.008.
^Felber, Jean-Pierre; Coombs, Thomas L.; Vallee, Bert L. (1962). "The mechanism of inhibition of carboxypeptidase A by 1,10-phenanthroline". Biochemistry. 1 (2): 231–238. doi:10.1021/bi00908a006. PMID13892106.
^Salvesen, GS & Nagase, H (2001). "Inhibition of proteolytic enzymes". In Beynon, Rob & Bond, J S (eds.). Proteolytic Enzymes: A Practical Approach. Vol. 1 (2nd ed.). Oxford University Press. pp. 105–130. ISBN978-0-19-963662-4.
^Accorsi, Gianluca; Listorti, Andrea; Yoosaf, K.; Armaroli, Nicola (2009). "1,10-Phenanthrolines: Versatile building blocks for luminescent molecules, materials and metal complexes". Chemical Society Reviews. 38 (6): 1690–2300. doi:10.1039/B806408N. PMID19587962.
^Preston, H. S.; Kennard, C. H. L. (1969). "Crystal Structure of di-mu-Chloro-sym-trans-Dichloro-Bis-(2,9-Dimethyl-1,10-Phenanthroline)dinickel(II)-2-Chloroform". J. Chem. Soc. A: 2682–2685. doi:10.1039/J19690002682.
^Leipoldt, J.G.; Lamprecht, G.J.; Steynberg, E.C. (1991). "Kinetics of the substitution of acetylacetone in acetylactonato-1,5-cyclooctadienerhodium(I) by derivatives of 1,10-phenantrholine and 2,2′-dipyridyl". Journal of Organometallic Chemistry. 402 (2): 259–263. doi:10.1016/0022-328X(91)83069-G.
^J. G. Leipoldt; G. J. Lamprecht; E. C.Steynberg (1991). "Kinetics of the Substitution of Acetylacetone in Acetylactonato-1,5-cyclooctadienerhodium(I) by Derivatives of 1,10-Phenanthroline and 2,2′-Dipyridyl". Journal of Organometallic Chemistry. 402 (2): 259–263. doi:10.1016/0022-328X(91)83069-G.
^Teng, Qiaoqiao; Huynh, Han Vinh (2017). "A Unified Ligand Electronic Parameter Based on C NMR Spectroscopy of N-Heterocyclic Carbene Complexes". Dalton Transactions. 46 (3): 614–627. doi:10.1039/C6DT04222H. PMID27924321.