Bruice published more than 600 papers during his career. He saw himself as a bioorganic chemist rather than as a biochemist, and that description is very apt for his work, as most of the molecules that he studied were natural products such as thyroxine.[4] In addition, he made important contributions to understanding enzyme catalysis, and he pioneered the use of imidazole-catalysed hydrolysis of p-nitrophenyl acetate as a model system.[5] (This system has the practical advantage that it is very convenient to follow the hydrolysis spectrophotometically.) He also stied[check spelling] a similar reaction catalysed by the enzyme ribonuclease.[6] More generally, he made a study of mechanisms for chymotrypsin catalysis.,[7] and in particular the "charge-relay" system as a way of understanding the role of the catalytic triad that exists in such enzymes.[8] He considered that "orbital steering" was a new name for a well established observation.[9][10]
Reviews
Bruice wrote reviews on a number of topics, including the use of small molecules to understand catalysis [11] and the chemistry of flavins,[12][13] and on enzyme catalysis in general.[14]
Books
Bruice collaborated with Stephen Benkovic to write a two-volume work on Bioorganic Mechanisms that helped establish this field.[15]
^Bruice, Thomas C.; Kharasch, Norman; Winzler, Richard J. (1956). "A correlation of thyroxine-like activity and chemical structure". Archives of Biochemistry and Biophysics. 62 (2): 305–317. doi:10.1016/0003-9861(56)90129-1. PMID13328119.
^Bruice, Thomas C.; Schmir, Gaston L. (1956). "The catalysis of the hydrolysis of p-nitrophenyl acetate by imidazole and its derivatives". Archives of Biochemistry and Biophysics. 63 (2): 484–486. doi:10.1016/0003-9861(56)90068-6. PMID13355478.
^Bruice, Thomas C.; Holmquist, Barton.; Stein, Thomas Peter. (1967). "Reaction of ribonuclease a with o-nitrophenyl hydrogen oxalate". Journal of the American Chemical Society. 89 (16): 4221–4222. doi:10.1021/ja00992a047. PMID6045612.
^Rogers, Gary A.; Bruice, Thomas C. (1974). "Synthesis and evaluation of a model for the so-called charge-relay system of the serine esterases". Journal of the American Chemical Society. 96 (8): 2473–2481. doi:10.1021/ja00815a028. PMID4833707.
^Bruice, Thomas C. (1980). "Mechanisms of flavin catalysis". Accounts of Chemical Research. 13 (8): 256–262. doi:10.1021/ar50152a002.
^Bruice, T.C. (1984). "Oxygen-flavin chemistry". Israel Journal of Chemistry. 24 (1): 54–61. doi:10.1002/ijch.198400008.
^Bruice, Thomas C.; Benkovic, Stephen J. (2000). "Chemical Basis for Enzyme Catalysis". Biochemistry. 39 (21): 6267–6274. doi:10.1021/bi0003689. PMID10828939.
^Bruice, T.C.; Benkovic, S.J. (1966). Bioorganic Mechanisms. New York: Benjamin, Inc.