Sum of normally distributed random variables

In probability theory, calculation of the sum of normally distributed random variables is an instance of the arithmetic of random variables.

This is not to be confused with the sum of normal distributions which forms a mixture distribution.

Independent random variables

Let X and Y be independent random variables that are normally distributed (and therefore also jointly so), then their sum is also normally distributed. i.e., if

then

This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations).[1]

In order for this result to hold, the assumption that X and Y are independent cannot be dropped, although it can be weakened to the assumption that X and Y are jointly, rather than separately, normally distributed.[2] (See here for an example.)

The result about the mean holds in all cases, while the result for the variance requires uncorrelatedness, but not independence.

Proofs

Proof using characteristic functions

The characteristic function

of the sum of two independent random variables X and Y is just the product of the two separate characteristic functions:

of X and Y.

The characteristic function of the normal distribution with expected value μ and variance σ2 is

So

This is the characteristic function of the normal distribution with expected value and variance

Finally, recall that no two distinct distributions can both have the same characteristic function, so the distribution of X + Y must be just this normal distribution.

Proof using convolutions

For independent random variables X and Y, the distribution fZ of Z = X + Y equals the convolution of fX and fY:

Given that fX and fY are normal densities,

Substituting into the convolution:

Defining , and completing the square:

The expression in the integral is a normal density distribution on x, and so the integral evaluates to 1. The desired result follows:

It can be shown that the Fourier transform of a Gaussian, , is[3]

By the convolution theorem:

Geometric proof

First consider the normalized case when X, Y ~ N(0, 1), so that their PDFs are

and

Let Z = X + Y. Then the CDF for Z will be

This integral is over the half-plane which lies under the line x+y = z.

The key observation is that the function

is radially symmetric. So we rotate the coordinate plane about the origin, choosing new coordinates such that the line x+y = z is described by the equation where is determined geometrically. Because of the radial symmetry, we have , and the CDF for Z is

This is easy to integrate; we find that the CDF for Z is

To determine the value , note that we rotated the plane so that the line x+y = z now runs vertically with x-intercept equal to c. So c is just the distance from the origin to the line x+y = z along the perpendicular bisector, which meets the line at its nearest point to the origin, in this case . So the distance is , and the CDF for Z is , i.e.,

Now, if a, b are any real constants (not both zero) then the probability that is found by the same integral as above, but with the bounding line . The same rotation method works, and in this more general case we find that the closest point on the line to the origin is located a (signed) distance

away, so that

The same argument in higher dimensions shows that if

then

Now we are essentially done, because

So in general, if

then

Correlated random variables

In the event that the variables X and Y are jointly normally distributed random variables, then X + Y is still normally distributed (see Multivariate normal distribution) and the mean is the sum of the means. However, the variances are not additive due to the correlation. Indeed,

where ρ is the correlation. In particular, whenever ρ < 0, then the variance is less than the sum of the variances of X and Y.

Extensions of this result can be made for more than two random variables, using the covariance matrix.

Note that the condition that X and Y are known to be jointly normally distributed is necessary for the conclusion that their sum is normally distributed to apply. It is possible to have variables X and Y which are individually normally distributed, but have a more complicated joint distribution. In that instance, X + Y may of course have a complicated, non-normal distribution. In some cases, this situation can be treated using copulas.

Proof

In this case (with X and Y having zero means), one needs to consider

As above, one makes the substitution

This integral is more complicated to simplify analytically, but can be done easily using a symbolic mathematics program. The probability distribution fZ(z) is given in this case by

where

If one considers instead Z = X − Y, then one obtains

which also can be rewritten with

The standard deviations of each distribution are obvious by comparison with the standard normal distribution.

References

  1. ^ Lemons, Don S. (2002), An Introduction to Stochastic Processes in Physics, The Johns Hopkins University Press, p. 34, ISBN 0-8018-6866-1
  2. ^ Lemons (2002) pp. 35–36
  3. ^ Derpanis, Konstantinos G. (October 20, 2005). "Fourier Transform of the Gaussian" (PDF).

See also

Read other articles:

Це іберійські ім'я та прізвище. Перше (батькове) прізвище цієї особи Баділья, а друге (материне) прізвище Сегура. Габріель Баділья Габріель Баділья Особисті дані Повне ім'я Габріель Баділья Сегура Народження 30 червня 1984(1984-06-30)   Сан-Хосе, Коста-Рика Смерть 20 листопада 2...

 

Universitas TohokuMoto実学尊重の精神 (Pendidikan dan Penelitian Berorientasi Praktik)Jenisperguruan tinggi negeriDidirikan1736; sebagai universitas: 22 Juni 1907PresidenAkihisa InoueStaf administrasi5.756[1]Sarjana10.967 (data 1 Mei 2009)[2]Magister4.224 (Master dan profesi), 2.785 (program doktoral)[2]Jumlah mahasiswa lain1.346 (mahasiswa asing)[1]LokasiSendai, Prefektur Miyagi, JepangKampuskawasan perkotaan:,2,5 km²WarnaUngu  Nama julukanTohokuda...

 

Este artigo ou secção contém uma lista de referências no fim do texto, mas as suas fontes não são claras porque não são citadas no corpo do artigo, o que compromete a confiabilidade das informações. Ajude a melhorar este artigo inserindo citações no corpo do artigo. (Novembro de 2020) Kondo Isami na Batalha de Koshu-Katsunuma. Tosa Jinshotai (迅衝隊) (Da esquerda na linha inferior: Ban Gondayu, Itagaki Taisuke, Tani Otoi (jovem rapaz), Yamachi Motoharu. Da esquerda na linha do ...

  لمعانٍ أخرى، طالع زبيدة (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2016) زبيدة الجنس أنثى لغة الاسم العربية  أصل الاسم الأصل اللغوي عربي المعنى خيار الشيء وأفضله المنطقة العالم العربي ألفا...

 

Кашкадар'їнський вілоят(Кашкадар'їнська область) Qashqadaryo viloyati Адміністративний центр Карші Країна  Узбекистан Межує з: сусідні адмінодиниці Бухарська область, Навоїйська область, Самаркандська область, Сурхандар'їнська область ? Офіційна мова узбецька Насел...

 

Червоний остріврос. Красный остров Жанр драмаРежисер Олександр ФенькоСценарист Олександр ФенькоУ головних ролях Олександр ФеклістовДіана Костріцина Андрій БолтнєвОператор Володимир КалашниковКомпозитор Ольга КриволапХудожник Олександр ТихоновичКінокомпанія Імп...

Scottish clothing manufacturer Pringle of Scotland LimitedCurrent logoTrade namePringle of ScotlandNative namePringle na h-AlbaIndustryFashionFounded1815; 208 years ago (1815)FounderRobert PringleHeadquartersEdinburgh, Scotland[1]Key peopleOtto WeiszOwnerS.C. Fang & Sons Company, LtdWebsitewww.pringlescotland.com Pringle of Scotland Limited (Scottish Gaelic: Pringle na h-Alba), trading as Pringle of Scotland, is a Scottish fashion brand specialising in cashmere k...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. Hashimoto adalah nama Jepang. Tokoh-tokoh dengan nama Jepang ini antara lain: Pemain sepak bola Jepang Kento Hashimoto (1999) Takumi Hashimoto (pemain sepak bola) Hayato Hashimoto Hideo Hashimoto Kenichi Hashimoto Kento Hashimoto Koichi Hashimoto Koji ...

 

1995 compilation album by Various artistsMTV Party To Go Volume 7Compilation album by Various artistsReleasedOctober 31, 1995GenreDanceLength53:53LabelTommy BoyVarious artists chronology MTV Party to Go 6(1994) MTV Party To Go Volume 7(1995) MTV Party to Go 8(1995) Professional ratingsReview scoresSourceRatingAllmusic[1] MTV Party To Go Volume 7 was the seventh album in MTV's Party To Go series. The album was certified gold on April 10, 1996, by the RIAA.[2] Track list...

Collection of poems by Seamus HeaneyMid-Term Break redirects here. For other uses, see Spring break. Death of a Naturalist First editionAuthorSeamus HeaneyLanguageEnglishPublisherFaber and FaberPublication date1966Media typePrintPages58 ppISBN0-571-06665-8OCLC4686783Followed byDoor into the Dark  Death of a Naturalist (1966) is a collection of poems written by Seamus Heaney, who received the 1995 Nobel Prize in Literature. The collection was Heaney's first major published volum...

 

  提示:此条目的主题不是黑色領結。 黑领带《我为喜剧狂》分集剧集编号第1季第12集导演唐·斯卡迪诺(英语:Don Scardino)编剧凯·加农蒂娜·菲制作代码112首播日期2007年2月1日 (2007-02-01)客串演员 凯文·布朗(Kevin Brown)饰达特·康·斯莱特里(Dot Com Slattery) 格里兹·查普曼(Grizz Chapman)饰格里兹·格里斯伍德(Grizz Griswold) 威尔·福特(英语:Will Forte)饰托马斯...

 

逆轉裁判逆転裁判Gyakuten saiban基本资料导演三池崇史编剧櫻井武晴祥子大宗原著逆轉裁判系列主演成宮寬貴桐谷美玲齋藤工配乐遠藤浩二摄影岡正和片长135公鐘产地日本语言日語上映及发行上映日期2012年2月11日(日本)发行商東寶票房6,145,000美元 《逆轉裁判》(日语:逆転裁判)是一齣於2012年上映的日本律政劇電影,改編自卡普空的電子遊戲系列逆轉裁判系列。[1]此...

2010 song by KeshaStephenSong by Keshafrom the album Animal ReleasedJanuary 1, 2010Recorded2007; ACME Recording (Long Island, California); Ollywood Studios (Hollywood, California)GenreDance-popLength3:32LabelRCASongwriter(s)Kesha SebertDavid GamsonPebe SebertOliver LeiberProducer(s)David GamsonOliver LeiberMusic videoStephen on YouTube Stephen is a song by American recording artist and songwriter Kesha, taken from her debut studio album, Animal (2010). The song was written by Kesha in collabo...

 

1978 single by Warren Zevon This article is about the song. For the video game, see Werewolves of London (video game). Not to be confused with Werewolf of London. Werewolves of LondonSingle by Warren Zevonfrom the album Excitable Boy B-sideRoland the Headless Thompson GunnerReleasedJanuary 18, 1978[citation needed]Recorded1977GenreRockcomedy rockLength3:27LabelAsylumSongwriter(s)LeRoy Marinell, Waddy Wachtel, Warren ZevonProducer(s)Jackson Browne, Waddy WachtelWarren Zevon singles chr...

 

Concert honouring Broadway musical theatre composer and lyricist Stephen Sondheim The topic of this article may not meet Wikipedia's notability guideline for music. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: Stephen Sondheim's Old Frie...

Delapan PanjiNegara Dinasti QingTipe unitAngkatan darat, divisi administratifPertempuranInvasi Jin Akhir ke Joseon Penaklukan Ming oleh Qing Pertempuran Ningyuan Pertempuran Lintasan Shanhai Invasi Qing ke Joseon Pemberontakan Tiga Bawahan Sepuluh Kampanye Besar Militer Perang Candu Pertama Perang Candu Kedua Pemberontakan Taiping Pemberontakan Boxer Revolusi Xinhai Artikel ini memuat Teks Manchu. Tanpa bantuan render yang baik, anda mungkin akan melihat tanda tanya, kotak-kotak, atau si...

 

Type of dining establishment For a restaurant operated in a private residence, see Underground restaurant. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Supper club – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this template message) Postcard for Larry Potter's ...

 

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Situ Aksan – berita · surat kabar · buku · cendekiawan · JSTOR (September 2021) Situ Aksan, BandungJenis perairanDanau buatanTerletak di negaraIndonesiaKepulauanJawaPermukimanBandung Situ Aksan adalah bekas d...

Lock on the River Thames in Surrey, England Shepperton LockShepperton lock (2005)51°22′55.5″N 00°27′31″W / 51.382083°N 0.45861°W / 51.382083; -0.45861WaterwayRiver ThamesCountySurreyMaintained byEnvironment AgencyOperationHydraulicFirst built1813Latest built1899Length53.16 m (174 ft 5 in) [1]Width6.04 m (19 ft 10 in)[1]Fall2.03 m (6 ft 8 in)[1]Above sea level33 ft (10&#...

 

Human settlement in ScotlandDunsDuns from Duns LawDunsLocation within the Scottish BordersPopulation2,820 (mid-2020 est.)[1]OS grid referenceNT786539Council areaScottish BordersLieutenancy areaBerwickshireCountryScotlandSovereign stateUnited KingdomPost townDunsPostcode districtTD11Dialling code01361PoliceScotlandFireScottishAmbulanceScottish UK ParliamentBerwickshire, Roxburgh and SelkirkScottish ParliamentEttrick, Roxburgh and B...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!