Strain rate

Strain rate
In SI base unitss-1
Dimension

In mechanics and materials science, strain rate is the time derivative of strain of a material. Strain rate has dimension of inverse time and SI units of inverse second, s−1 (or its multiples).

The strain rate at some point within the material measures the rate at which the distances of adjacent parcels of the material change with time in the neighborhood of that point. It comprises both the rate at which the material is expanding or shrinking (expansion rate), and also the rate at which it is being deformed by progressive shearing without changing its volume (shear rate). It is zero if these distances do not change, as happens when all particles in some region are moving with the same velocity (same speed and direction) and/or rotating with the same angular velocity, as if that part of the medium were a rigid body.

The strain rate is a concept of materials science and continuum mechanics that plays an essential role in the physics of fluids and deformable solids. In an isotropic Newtonian fluid, in particular, the viscous stress is a linear function of the rate of strain, defined by two coefficients, one relating to the expansion rate (the bulk viscosity coefficient) and one relating to the shear rate (the "ordinary" viscosity coefficient). In solids, higher strain rates can often cause normally ductile materials to fail in a brittle manner.[1]

Definition

The definition of strain rate was first introduced in 1867 by American metallurgist Jade LeCocq, who defined it as "the rate at which strain occurs. It is the time rate of change of strain." In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured.

The strain is the ratio of two lengths, so it is a dimensionless quantity (a number that does not depend on the choice of measurement units). Thus, strain rate has dimension of inverse time and units of inverse second, s−1 (or its multiples).

Simple deformations

In simple contexts, a single number may suffice to describe the strain, and therefore the strain rate. For example, when a long and uniform rubber band is gradually stretched by pulling at the ends, the strain can be defined as the ratio between the amount of stretching and the original length of the band:

where is the original length and its length at each time . Then the strain rate will be

where is the speed at which the ends are moving away from each other.

The strain rate can also be expressed by a single number when the material is being subjected to parallel shear without change of volume; namely, when the deformation can be described as a set of infinitesimally thin parallel layers sliding against each other as if they were rigid sheets, in the same direction, without changing their spacing. This description fits the laminar flow of a fluid between two solid plates that slide parallel to each other (a Couette flow) or inside a circular pipe of constant cross-section (a Poiseuille flow). In those cases, the state of the material at some time can be described by the displacement of each layer, since an arbitrary starting time, as a function of its distance from the fixed wall. Then the strain in each layer can be expressed as the limit of the ratio between the current relative displacement of a nearby layer, divided by the spacing between the layers:

Therefore, the strain rate is

where is the current linear speed of the material at distance from the wall.

The strain-rate tensor

In more general situations, when the material is being deformed in various directions at different rates, the strain (and therefore the strain rate) around a point within a material cannot be expressed by a single number, or even by a single vector. In such cases, the rate of deformation must be expressed by a tensor, a linear map between vectors, that expresses how the relative velocity of the medium changes when one moves by a small distance away from the point in a given direction. This strain rate tensor can be defined as the time derivative of the strain tensor, or as the symmetric part of the gradient (derivative with respect to position) of the velocity of the material.

With a chosen coordinate system, the strain rate tensor can be represented by a symmetric 3×3 matrix of real numbers. The strain rate tensor typically varies with position and time within the material, and is therefore a (time-varying) tensor field. It only describes the local rate of deformation to first order; but that is generally sufficient for most purposes, even when the viscosity of the material is highly non-linear.

Strain rate testing

Materials can be tested using the so-called epsilon dot () method[2] which can be used to derive viscoelastic parameters through lumped parameter analysis.

Sliding rate or shear strain rate

Similarly, the sliding rate, also called the deviatoric strain rate or shear strain rate is the derivative with respect to time of the shear strain. Engineering sliding strain can be defined as the angular displacement created by an applied shear stress, .[3]

Uniaxial engineering shear strain

Therefore the unidirectional sliding strain rate can be defined as:

See also

References

  1. ^ Askeland, Donald (2016). The science and engineering of materials. Wright, Wendelin J. (Seventh ed.). Boston, MA: Cengage Learning. p. 184. ISBN 978-1-305-07676-1. OCLC 903959750.
  2. ^ Tirella, Ahluwalia (October 2014). "Strain rate viscoelastic analysis of soft and highly hydrated biomaterials". Journal of Biomedical Materials Research. 102 (10): 3352–3360. doi:10.1002/jbm.a.34914. PMC 4304325. PMID 23946054.
  3. ^ Soboyejo, Wole (2003). Mechanical properties of engineered materials. Marcel Dekker. ISBN 0-8247-8900-8. OCLC 300921090.

Read other articles:

Nigerian-Italian basketball player Benjamin EzeEze while playing with Montepaschi SienaPersonal informationBorn (1981-02-08) February 8, 1981 (age 42)Lagos, NigeriaNationalityNigerian / ItalianListed height6 ft 10 in (2.08 m)Listed weight255 lb (116 kg)Career informationCollegeCollege of Southern Idaho (1999–2001)NBA draft2001: UndraftedPlaying career1998–2014PositionCenterCareer history1998Avtodor Saratov2001Geoplin Slovan2001–2004Viola Reggio Calabria2004...

 

Belgian tennis player This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Alison Van Uytvanck – news · newspapers · books · scholar · JSTOR (July 2019) (Learn how and when to remove this template me...

 

Questa voce o sezione sull'argomento politici italiani non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento. Umberto Chincarini Senatore della Repubblica ItalianaDurata mandato30 maggio 2001 –27 aprile 2006 LegislaturaXIV GruppoparlamentareLega Nord CoalizioneCasa delle Libertà CircoscrizioneVen...

Este artículo o sección tiene referencias, pero necesita más para complementar su verificabilidad.Este aviso fue puesto el 8 de mayo de 2020. Fotograma de Katsudō Shashin (1907), la primera manifestación de la animación nipona. La historia del anime, el género de animación de origen japonés, comienza en la segunda década del siglo XX. Algún tiempo tras la Segunda Guerra Mundial, empezaron a surgir grandes compañías dedicadas tanto a las series televisivas como a los largomet...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Januari 2023. ZAP70Struktur yang tersediaPDBPencarian Ortolog: PDBe RCSB Daftar kode id PDB4XZ0, 1FBV, 1M61, 1U59, 2CBL, 2OQ1, 2OZO, 2Y1N, 3ZNI, 4A4B, 4A4C, 4K2R, 4XZ1PengidentifikasiAliasZAP70, SRK, STCD, STD, TZK, ZAP-70, zeta chain of T cell receptor associated p...

 

Grand Prix Sepeda Motor F.I.M. musim 1955 Sebelum: 1954 Sesudah: 1956 Geoff Duke (foto tahun 1951) memenangkan gelar Kejuaraan Dunia 500cc terakhirnya pada tahun 1955. Grand Prix Sepeda Motor musim 1954 merupakan edisi ke-7 dari kejuaraan Grand Prix Sepeda Motor. Musim ini diselenggarakan 8 Grand Prix dengan 5 kelas: 500cc, 350cc, 250cc, 125cc dan Sidecars 500cc. Kompetisi berlangsung mulai tanggal 1 Mei di Grand Prix Spanyol dan berakhir tanggal 4 September di Grand Prix Nations di Italia. K...

Греція Ця стаття є частиною серії статей продержавний лад і устрійГреції Конституція Правова система Права людини Глава держави Президент (список) Прокопіс Павлопулос Віце-президент Янніс Драгасакіс Виконавча влада Прем'єр-міністр (список) Алексіос Ципрас Законодавча ...

 

Перша пілотована повітряна куля, створена братами Монгольф'є Сучасна повітряна куля Пові́тряна ку́ля (англ. Balloon, нім. Ballon) — літальний апарат типу «легший-за-повітря» (аеростат), в якому для польоту використовується підіймальна сила повітроплавального газу або нагріт...

 

1995 studio album by W.A.S.P.Still Not Black EnoughStudio album by W.A.S.P.ReleasedJune 1995 (UK and Japan)[1]October 5, 1995 (Europe)August 1996 (US)GenreHeavy metalLength38:30LabelVictor (Japan)Raw Power/CastleProducerBlackie LawlessW.A.S.P. chronology First Blood Last Cuts(1993) Still Not Black Enough(1995) Kill Fuck Die(1997) Singles from Still Not Black Enough Black Forever / Goodbye AmericaReleased: June 1995 Professional ratingsReview scoresSourceRatingAllMusic[2 ...

Titelblatt und Frontispiz der Erstausgabe, von Carl Ermer in Kupfer gestochen. Der arabische Text[1] lautet in wörtlicher Übersetzung: Der östliche Divan vom westlichen Verfasser. Schrift und Seitengestaltung des Erstdrucks Goethes Reinschrift seines Gedichts Talismane (fotomechanische Wiedergabe) West-östlicher Divan (erschienen 1819, erweitert 1827) ist die umfangreichste Gedichtsammlung von Johann Wolfgang von Goethe. Sie wurde durch die Werke des persischen Dichters Hafis insp...

 

Venezuelan footballer (born 1980) For other people named Juan Arango, see Juan Arango (disambiguation). In this Spanish name, the first or paternal surname is Arango and the second or maternal family name is Sáenz. Juan Arango Arango with Borussia M'gladbach in 2012Personal informationFull name Juan Fernando Arango SáenzDate of birth (1980-05-16) 16 May 1980 (age 43)Place of birth Maracay, VenezuelaHeight 1.80 m (5 ft 11 in)Position(s) Attacking midfielderYouth c...

 

Koridor 14 TransjakartaJakarta International Stadium - SenenHalte Jembatan Item adalah salah satu empat halte baru yang dibangun untuk melayani koridor 14InfoPemilikPT. Transportasi JakartaWilayahJakarta PusatJakarta UtaraJenisStreet-level Bus Rapid TransitJumlah stasiun9 halteOperasiDimulai1 Maret 2022 (non BRT)10 November 2023 (full BRT)Operator PT. Transportasi Jakarta (prasarana, armada, pramudi, dan petugas) Perum DAMRI (armada dan pramudi) Bianglala Metropolitan (armada dan pramudi) Tek...

ヴァーツラフ・スメターチェクVáclav Smetáček 1931年、プラハ木管五重奏団のメンバーと(左端がスメターチェク)基本情報生誕 1906年9月30日 オーストリア=ハンガリー帝国ブルノ出身地 チェコスロバキア、プラハ死没 (1986-02-18) 1986年2月18日(79歳没) チェコスロバキア プラハ学歴 プラハ大学ジャンル クラシック音楽職業 指揮者、オーボエ奏者、作曲家担当楽器 オーボ...

 

American pornographic actress and model (1986-2017) Yurizan BeltranBeltran in 2013BornYurizan Beltrán(1986-11-02)November 2, 1986Los Angeles, California, U.S.DiedDecember 13, 2017(2017-12-13) (aged 31)Bellflower, California, U.S.Cause of deathDrug overdoseOther namesYuri LuvOccupations pornographic actress model actress Years active2005–2017 Yurizan Beltrán (November 2, 1986 – December 13, 2017) was an American pornographic actress, model, and mainstream actress.[...

 

Genus of mammals belonging to the capuchin and squirrel monkey family of primates Squirrel monkeys[1]Temporal range: Miocene (Laventan to recent13.8–0 Ma PreꞒ Ꞓ O S D C P T J K Pg N Common squirrel monkey Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Primates Suborder: Haplorhini Infraorder: Simiiformes Family: Cebidae Subfamily: SaimiriinaeMiller, 1912 (1900) Genus: SaimiriVoigt, 1831 Type species Simia sciureaLinnaeu...

Season of television series Season of television series SeinfeldSeason 1DVD cover for seasons one and twoCountry of originUnited StatesNo. of episodes5ReleaseOriginal networkNBCOriginal releaseJuly 5, 1989 (1989-07-05) –June 21, 1990 (1990-06-21)Season chronologyNext →Season 2 List of episodes Season one of Seinfeld, an American television series created by Jerry Seinfeld and Larry David, began airing on July 5, 1989, on NBC.[1] Originally called The Seinfeld C...

 

Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus. Cet article ne s'appuie pas, ou pas assez, sur des sources secondaires ou tertiaires (janvier 2021). Pour améliorer la vérifiabilité de l'article ainsi que son intérêt encyclopédique, il est nécessaire, quand des sources primaires sont citées, de les associer à des analyses faites par des sources secondaires. Port de Saint-MaloLe port de Saint-Malo vu d'avionPrésentationType Port de commerceTrafic 2,2 M...

 

Israeli actress Geula Nuniגאולה נוניNuni (right) with Yoni Hamenachem in Through His Eyes (2011)Born(1942-06-09)9 June 1942Ramat Gan, Mandatory PalestineDied10 November 2014(2014-11-10) (aged 72)Tel Aviv, IsraelOccupationsActresssingerYears active1957–2011Children1 Geula Nuni (Hebrew: גאולה נוני; 9 June 1942 – 10 November 2014) was an Israeli actress and singer.[1] Biography Nuni was born in Ramat Gan in a family of three daughters to a Yemeni-Jewish fa...

2019 soundtrack album to Death Stranding by various artistsDeath Stranding: TimefallSoundtrack album to Death Stranding by various artistsReleasedNovember 7, 2019 (2019-11-07)GenreVideo game musicLength28:59LabelRCASonySingles from Death Stranding: Timefall Death StrandingReleased: October 1, 2019[1] Yellow BoxReleased: October 10, 2019[2] GhostReleased: October 17, 2019[3] TriggerReleased: October 24, 2019 LudensReleased: November 6, 201...

 

Indian actor Juby Ninanജൂബി നൈനാൻBornKottayam, Kerala, IndiaOccupationActorYears active2013–presentKnown forDum (2016) Juby Ninan is an Indian actor who works in Malayalam films.[1][2] He made his film debut in Persiakaran (2014).[3][4] Ninan was noticed as the leading antagonist in the 2016 action film Dum, starring Lal and Shine Tom Chacko.[5][6] Film career Juby Ninan was among many newcomers selected for the fil...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!