Stiefel manifold

In mathematics, the Stiefel manifold is the set of all orthonormal k-frames in That is, it is the set of ordered orthonormal k-tuples of vectors in It is named after Swiss mathematician Eduard Stiefel. Likewise one can define the complex Stiefel manifold of orthonormal k-frames in and the quaternionic Stiefel manifold of orthonormal k-frames in . More generally, the construction applies to any real, complex, or quaternionic inner product space.

In some contexts, a non-compact Stiefel manifold is defined as the set of all linearly independent k-frames in or this is homotopy equivalent to the more restrictive definition, as the compact Stiefel manifold is a deformation retract of the non-compact one, by employing the Gram–Schmidt process. Statements about the non-compact form correspond to those for the compact form, replacing the orthogonal group (or unitary or symplectic group) with the general linear group.

Topology

Let stand for or The Stiefel manifold can be thought of as a set of n × k matrices by writing a k-frame as a matrix of k column vectors in The orthonormality condition is expressed by A*A = where A* denotes the conjugate transpose of A and denotes the k × k identity matrix. We then have

The topology on is the subspace topology inherited from With this topology is a compact manifold whose dimension is given by

As a homogeneous space

Each of the Stiefel manifolds can be viewed as a homogeneous space for the action of a classical group in a natural manner.

Every orthogonal transformation of a k-frame in results in another k-frame, and any two k-frames are related by some orthogonal transformation. In other words, the orthogonal group O(n) acts transitively on The stabilizer subgroup of a given frame is the subgroup isomorphic to O(nk) which acts nontrivially on the orthogonal complement of the space spanned by that frame.

Likewise the unitary group U(n) acts transitively on with stabilizer subgroup U(nk) and the symplectic group Sp(n) acts transitively on with stabilizer subgroup Sp(nk).

In each case can be viewed as a homogeneous space:

When k = n, the corresponding action is free so that the Stiefel manifold is a principal homogeneous space for the corresponding classical group.

When k is strictly less than n then the special orthogonal group SO(n) also acts transitively on with stabilizer subgroup isomorphic to SO(nk) so that

The same holds for the action of the special unitary group on

Thus for k = n − 1, the Stiefel manifold is a principal homogeneous space for the corresponding special classical group.

Uniform measure

The Stiefel manifold can be equipped with a uniform measure, i.e. a Borel measure that is invariant under the action of the groups noted above. For example, which is isomorphic to the unit circle in the Euclidean plane, has as its uniform measure the natural uniform measure (arc length) on the circle. It is straightforward to sample this measure on using Gaussian random matrices: if is a random matrix with independent entries identically distributed according to the standard normal distribution on and A = QR is the QR factorization of A, then the matrices, are independent random variables and Q is distributed according to the uniform measure on This result is a consequence of the Bartlett decomposition theorem.[1]

Special cases

A 1-frame in is nothing but a unit vector, so the Stiefel manifold is just the unit sphere in Therefore:

Given a 2-frame in let the first vector define a point in Sn−1 and the second a unit tangent vector to the sphere at that point. In this way, the Stiefel manifold may be identified with the unit tangent bundle to Sn−1.

When k = n or n−1 we saw in the previous section that is a principal homogeneous space, and therefore diffeomorphic to the corresponding classical group:

Functoriality

Given an orthogonal inclusion between vector spaces the image of a set of k orthonormal vectors is orthonormal, so there is an induced closed inclusion of Stiefel manifolds, and this is functorial. More subtly, given an n-dimensional vector space X, the dual basis construction gives a bijection between bases for X and bases for the dual space which is continuous, and thus yields a homeomorphism of top Stiefel manifolds This is also functorial for isomorphisms of vector spaces.

As a principal bundle

There is a natural projection

from the Stiefel manifold to the Grassmannian of k-planes in which sends a k-frame to the subspace spanned by that frame. The fiber over a given point P in is the set of all orthonormal k-frames contained in the space P.

This projection has the structure of a principal G-bundle where G is the associated classical group of degree k. Take the real case for concreteness. There is a natural right action of O(k) on which rotates a k-frame in the space it spans. This action is free but not transitive. The orbits of this action are precisely the orthonormal k-frames spanning a given k-dimensional subspace; that is, they are the fibers of the map p. Similar arguments hold in the complex and quaternionic cases.

We then have a sequence of principal bundles:

The vector bundles associated to these principal bundles via the natural action of G on are just the tautological bundles over the Grassmannians. In other words, the Stiefel manifold is the orthogonal, unitary, or symplectic frame bundle associated to the tautological bundle on a Grassmannian.

When one passes to the limit, these bundles become the universal bundles for the classical groups.

Homotopy

The Stiefel manifolds fit into a family of fibrations:

thus the first non-trivial homotopy group of the space is in dimension n − k. Moreover,

This result is used in the obstruction-theoretic definition of Stiefel–Whitney classes.

See also

References

  1. ^ Muirhead, Robb J. (1982). Aspects of Multivariate Statistical Theory. John Wiley & Sons, Inc., New York. pp. xix+673. ISBN 0-471-09442-0.
  2. ^ Chikuse, Yasuko (1 May 2003). "Concentrated matrix Langevin distributions". Journal of Multivariate Analysis. 85 (2): 375–394. doi:10.1016/S0047-259X(02)00065-9. ISSN 0047-259X.
  3. ^ Pal, Subhadip; Sengupta, Subhajit; Mitra, Riten; Banerjee, Arunava (September 2020). "Conjugate Priors and Posterior Inference for the Matrix Langevin Distribution on the Stiefel Manifold". Bayesian Analysis. 15 (3): 871–908. doi:10.1214/19-BA1176. ISSN 1936-0975.

Read other articles:

American college football season 2021 Bowling Green Falcons footballConferenceMid-American ConferenceDivisionEast DivisionRecord4–8 (2–6 MAC)Head coachScot Loeffler (3rd season)Offensive coordinatorTerry Malone (3rd season)Defensive coordinatorEric Lewis (1st season)Home stadiumDoyt Perry Stadium(capacity: 23,724)Seasons← 20202022 → 2021 Mid-American Conference football standings vte Conf Overall Team   W   L     W   L ...

 

Eleições legislativas portuguesas de 1999 Distritos: Aveiro | Beja | Braga | Bragança | Castelo Branco | Coimbra | Évora | Faro | Guarda | Leiria | Lisboa | Portalegre | Porto | Santarém | Setúbal | Viana do Castelo | Vila Real | Viseu | Açores | Madeira | Estrangeiro ← 1995 •  • 2002 → Eleições legislativas portuguesas de 1999 no distrito de Braga 17 deputados à Assembleia da República Demografia eleitoral Hab. inscritos: ...

 

International affairs school of Middlebury College (Vermont) This article contains academic boosterism which primarily serves to praise or promote the subject and may be a sign of a conflict of interest. Please improve this article by removing peacock terms, weasel words, and other promotional material. (July 2023) (Learn how and when to remove this template message) Middlebury Institute of International Studies at MontereyFormer namesMonterey Institute of Foreign Studies (1955-1979), Montere...

Göpelwerk auf der Museumslay Die Museumslay in Mendig ist eine Freiluftausstellung zum Basalt­abbau und zur Basaltverarbeitung und gehört zu den Stationen des Vulkanparks. In Mendig wurde bis 1964 Basaltstein unter Tage abgebaut.[1] Ca. 3 km² der Stadt sind durch den Abbau unterhöhlt und ein Netz aus Stollen und Schächten entstand.[2] Die Museumslay befindet sich zusammen mit dem Lava-Dome und den Lavakellern auf der „Museumsinsel“. Während im Vulkanmuseum „La...

 

Disused railway station in West Yorkshire, England St. Paul'sSite of the former station in 2010General informationLocationHalifax, CalderdaleEnglandCoordinates53°43′06″N 1°52′54″W / 53.71829°N 1.88169°W / 53.71829; -1.88169Grid referenceSE079246Other informationStatusDisusedHistoryOriginal companyHalifax High Level RailwayPre-groupingLancashire & Yorkshire Railway and Great Northern RailwayPost-groupingLondon, Midland and Scottish Railway and London and...

 

Duta Besar Amerika Serikat untuk GabonSegel Kementerian Dalam Negeri Amerika SerikatDicalonkan olehPresiden Amerika SerikatDitunjuk olehPresidendengan nasehat Senat Berikut ini adalah daftar Duta Besar Amerika Serikat untuk Gabon Daftar W. Wendell Blancke Charles F. Darlington David M. Bane Richard Funkhouser John A. McKesson, III Andrew L. Steigman Arthur T. Tienken Francis Terry McNamara Larry C. Williamson Warren Clark, Jr. Keith Leveret Wauchope Joseph Charles Wilson IV Elizabeth Raspolic...

Cet article est une ébauche concernant le jeu vidéo. Vous pouvez partager vos connaissances en l’améliorant (comment ?) (voir l’aide à la rédaction). Street Fighter II'Champion EditionDéveloppeur CapcomÉditeur CapcomCompositeur Yoko ShimomuraProducteur Yoshiki OkamotoDate de sortie Mars 1992Genre Jeu de combatMode de jeu 1 à 2 joueursPlate-forme Arcade :CP SystemOrdinateur(s) :PC : WindowsConsole(s) :Mega Drive, PC-Engine, Master System, Saturn, PlayStatio...

 

Khosrow Sinai (2015) Khosrow Sinai (persisch خسرو سینایی; * 19. Januar 1941 in Sari, Iran; † 1. August 2020 in Teheran) war ein iranischer Filmregisseur und Hochschullehrer. Sein Werk umfasst überwiegend sozialkritische Dokumentationen. Er war der erste iranische Regisseur, der nach der islamischen Revolution einen internationalen Preis gewinnen konnte. Ihm wurde der Orden Ritterkreuz des Verdienstordens der Polnischen Republik verliehen.[1] Inhaltsverzeichnis 1 Leben...

 

Tom Scheurs (m) en Gustav Czopp (r) met de kleinste man van Nederland, de heer Keizer (98 cm), in 1939. Cornelis Peter Anton (Tom) Schreurs (Den Haag, 9 november 1896 - Amsterdam, 28 oktober 1956) was een Nederlands sportjournalist. Hij was een uitstekend bokser: in 1916 haalde hij de finale van het Nederlands kampioenschap zwaargewicht, die hij overigens verloor. Schreurs begon zijn carrière bij de Haagse gemeentepolitie, waar hij het schopte tot inspecteur. Daarnaast was hij een enthousias...

Coconut production plays an important role in the national economy of Indonesia. According to figures published in December 2009 by the Food and Agriculture Organization of the United Nations, it is the world's second largest producer of coconuts, producing 15,319,500 tonnes in 2009.[1] References ^ Food And Agriculture Organization of the United Nations: Economic And Social Department: The Statistical Division This agriculture article is a stub. You can help Wikipedia by expanding it...

 

Resort casino in Summerlin, Nevada JW Marriott Las VegasGeneral informationLocationSummerlin, NevadaAddress221 North Rampart BoulevardOpeningJuly 15, 1999OwnerHotspur ResortsAffiliationJW MarriottTechnical detailsFloor count6[1]Design and constructionArchitect(s)Paul SteelmanDeveloperSwiss CasinosMain contractorJ.A. Jones ConstructionOther informationNumber of rooms469Number of suites79Websitemarriott.com/hotels/propertypage/lasjw JW Marriott Las Vegas Resort and Spa is a resort in Su...

 

American pop rock band This article is about the band. For their debut album, see Huey Lewis and the News (album). Huey Lewis and the NewsHuey Lewis and the News in 2006Background informationOriginSan Francisco, California, U.S.GenresRock[1]blue-eyed soul[2]new wave[3]pop[2]power pop[2]rhythm & blues[2][3]roots rock[2]doo-wop[1]Years active1979–present[4]LabelsChrysalis, Elektra, BMGMembersHuey LewisJohnny C...

2017 Chinese filmThe Mysterious FamilyTheatrical release posterDirected byPark Yu-hwanWritten byPark Yu-hwanProduced byPan ShulingStarringAriel LinJiang WuKara HuiChen XiaoLan Cheng-lungProductioncompanyHengye PicturesDistributed byHengye PicturesRelease date April 21, 2017 (2017-04-21) Running time92 minutesCountryChinaLanguageMandarinBox officeUS$2.2 million (China)[1][2]NT$9.9 million (Taiwan)[3] The Mysterious Family (Chinese: 神秘家族; also ...

 

Township in Indiana, United StatesPrairie TownshipTownshipCoordinates: 41°20′08″N 86°46′35″W / 41.33556°N 86.77639°W / 41.33556; -86.77639CountryUnited StatesStateIndianaCountyLaPorteGovernment • TypeIndiana townshipArea • Total24 sq mi (60 km2) • Land24 sq mi (60 km2) • Water0 sq mi (0 km2)Elevation[1]673 ft (205 m)Population (2010) •&...

 

Pakistani geologist This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: M. Qasim Jan – news · newspapers · books · scholar · JSTOR (October 2015) (Learn how and when to remove this template message)...

The Band discographyThe Band and friends during The Last WaltzStudio albums10Live albums9Compilation albums10Video albums8Singles33Collaborative albums9 The discography of The Band, a rock group, consists of ten studio albums, nine live albums, nine compilation albums, and thirty-three singles, as well as two studio and two live albums in collaboration with Bob Dylan. They were active from 1964 to 1976, and from 1983 to 1999. Since 1990, Capitol Records has re-released and expanded upon the v...

 

European ferry company This article is about the ferry line. For the separately-owned British cruise line, see P&O Cruises. For the separately-owned Australian cruise line, see P&O Cruises Australia. P&O FerriesTypePrivateIndustryTransportPredecessorP&OTownsend ThoresenP&O European FerriesP&O Irish SeaP&O PortsmouthP&O North SeaP&O Scottish FerriesFounded2002HeadquartersDover, EnglandKey peoplePeter Hebblethwaite, CEOServicesFerriesPort servicesPassenger tr...

 

2000 adventure video game 2000 video gameAconcaguaCover artDeveloper(s)WACWAC![a]Publisher(s)Sony Computer EntertainmentPlatform(s)PlayStationReleaseJP: June 1, 2000Genre(s)Point-and-click adventureMode(s)Single-player Aconcagua (アコンカグア) is an adventure video game developed by WACWAC! and published by Sony Computer Entertainment for the PlayStation. It was released only in Japan on June 1, 2000.[1] The game is set on a mountain after a plane crash, and allows for t...

 Giro dei Paesi Baschi 2019Edizione59ª Data8 aprile - 13 aprile PartenzaZumarraga ArrivoEibar Percorso783,7 km, 6 tappe Tempo19h24'09 Valida perUCI World Tour 2019 Classifica finalePrimo Ion Izagirre Secondo Daniel Martin Terzo Emanuel Buchmann Classifiche minoriPunti Maximilian Schachmann Montagna Adam Yates Giovani Tadej Pogačar Cronologia Edizione precedenteEdizione successiva Giro dei Paesi Baschi 2018Giro dei Paesi Baschi 2021 Manuale Il Giro dei Paesi Baschi 2...

 

Nepalese merchant and Buddhist philanthropist Pushpa Sundar Tuladhar (front row, extreme right, in white shirt) with five Newar priests wearing costumes representing Pancha Buddha at Swayambhu, Kathmandu in 1921. Gilded statue of Vairocana Buddha donated by Pushpa Sundar Tuladhar installed in a shrine on the east side of Swayambhu Stupa, Kathmandu. Pushpa Sundar Tuladhar (Nepali: पुष्पसुन्दर तुलाधर; 1885-1935) was a prominent merchant of Kathmandu and one of ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!