Solar mirror

A solar mirror in the Solar Collector Laboratory at Lewis Research Center, November 1966

A solar mirror contains a substrate with a reflective layer for reflecting the solar energy, and in most cases an interference layer. This may be a planar mirror or parabolic arrays of solar mirrors used to achieve a substantially concentrated reflection factor for solar energy systems.

See article "Heliostat" for more information on solar mirrors used for terrestrial energy.

Components

Glass or metal substrate

The substrate is the mechanical layer which holds the mirror in shape.

Glass may also be used as a protective layer to protect the other layers from abrasion and corrosion. Although glass is brittle, it is a good material for this purpose, because it is highly transparent (low optical losses), resistant to ultraviolet light (UV), fairly hard (abrasion resistant), chemically inert, and fairly easy to clean. It is composed of a float glass with high optical transmission characteristics in the visible and infrared ranges, and is configured to transmit visible light and infrared radiation. The top surface, known as the "first surface", will reflect some of the incident solar energy, due to the reflection coefficient caused by its index of refraction being higher than air. Most of the solar energy is transmitted through the glass substrate to the lower layers of the mirror, possibly with some refraction, depending on the angle of incidence as light enters the mirror.

Metal substrates ("Metal Mirror Reflectors") may also be used in solar reflectors. NASA Glenn Research Center, for example, used a mirror comprising a reflective aluminum surface on a metallic honeycomb[1] as a prototype reflector unit for a proposed power system for the International Space Station. One technology uses aluminum composite reflector panels, achieving over 93% reflectivity and coated with a speciality coating for surface protection. Metal reflectors offer some advantages over glass reflectors, as they are lightweight and stronger than glass and relatively inexpensive. The ability to retain parabolic shape in reflectors is another advantage, and normally the subframe requirements are reduced by more than 300%. The top surface reflection coating allows for better efficiency.

Reflective layer

The reflective layer is designed to reflect the maximum amount of solar energy incident upon it, back through the glass substrate. The layer comprises a highly reflective thin metal film, usually either silver or aluminum, but occasionally other metals. Because of sensitivity to abrasion and corrosion, the metal layer is usually protected by the (glass) substrate on top, and the bottom may be covered with a protective coating, such as a copper layer and varnish.

Despite the use of aluminum in generic mirrors, aluminum is not always used as the reflective layer for a solar mirror. The use of silver as the reflective layer is claimed to lead to higher efficiency levels, because it is the most reflective metal. This is because of aluminum's reflection factor in the UV region of the spectrum.[citation needed] Locating the aluminum layer on the first surface exposes it to weathering, which reduces the mirror's resistance to corrosion and makes it more susceptible to abrasion. Adding a protective layer to the aluminum would reduce its reflectivity.

Interference layer

An interference layer may be located on the first surface of the glass substrate.[2] It can be used to tailor the reflectance. It may also be designed for diffuse reflectance of near-ultraviolet radiation, in order to prevent it from passing through the glass substrate. This substantially enhances the overall reflection of near-ultraviolet radiation from the mirror. The interference layer may be made of several materials, depending on the desired refractive index, such as titanium dioxide.

Passive mirror cooling applications

The use of solar mirrors as a form of passive daytime radiative cooling for solar radiation management has been proposed to address local temperature increases as well as to decrease global warming.[3] Propositions have focused on the usage of solar mirrors both on the Earth's surface and in space.

Terrestrial applications

Passive mirror cooling systems reduce temperatures by reflecting solar radiation while shielding the base of the mirrors from heat penetration.[4] The effectiveness of such systems may be reduced with the accumulation of dust on mirrors, with maximum dust accumulation reducing mirror effectiveness by 63%. However, mirrors may be "self-cleaned" by rain (reducing the soiling rate to 18.6%) or cleaned by humans.[5]

On a local scale, passive mirror cooling systems have been implemented to lower the energy consumption used to cool residential and commercial buildings and thus offset the need for air-conditioning.[3] When passive mirrored surfaces are placed on roofs, they have been shown to reduce electricity consumption and costs for cooling, with one case study reducing costs by 15%.[6]

While the use of solar mirrors as a form of solar radiation management on a global scale has been proposed, more data and funding is required. Increasing awareness of passive radiative cooling's potential to lower costs as well as its role in reducing solar radiation may increase applications.[6] Researchers who support passive mirror cooling applications on a mass scale, such as Ye Tao of MEER, argue that carbon dioxide removal alone will not work fast enough to prevent global temperature increases from surpassing life-threatening levels.[7]

Space-based applications

Solar thermal applications

The intensity of solar thermal energy from solar radiation at the surface of the earth is about 1 kilowatt per square metre (0.093 kW/sq ft), of area normal to the direction of the sun, under clear-sky conditions. When solar energy is unconcentrated, the maximum collector temperature is about 80–100 °C (176–212 °F). This is useful for space heating and heating water. For higher temperature applications, such as cooking, or supplying a heat engine or turbine-electrical generator, this energy must be concentrated.

Terrestrial applications

Solar thermal systems have been constructed to produce concentrated solar power (CSP), for generating electricity.[8][9] The large Sandia Lab solar power tower uses a Stirling engine heated by a solar mirror concentrator.[10] Another configuration is the trough system.[11]

Space power application

"Solar dynamic" energy systems have been proposed for various spacecraft applications, including solar power satellites, where a reflector focuses sunlight on to a heat engine such as the Brayton cycle type.[12]

Photovoltaic augmentation

Photovoltaic cells (PV) which can convert solar radiation directly into electricity are quite expensive per unit area. Some types of PV cell, e.g. gallium arsenide, if cooled, are capable of converting efficiently up to 1,000 times as much radiation as is normally provided by simple exposure to direct sunlight.

In tests done by Sewang Yoon and Vahan Garboushian, for Amonix Corp.[13] silicon solar cell conversion efficiency is shown to increase at higher levels of concentration, proportional to the logarithm of the concentration, provided external cooling is available to the photocells. Similarly, higher efficiency multijunction cells also improve in performance with high concentration.[14]

Terrestrial application

To date no large scale testing has been performed on this concept. Presumably this is because the increased cost of the reflectors and cooling generally is not economically justified.

Solar power satellite application

Theoretically, for space-based solar power satellite designs, solar mirrors could reduce PV cell costs and launch costs since they are expected to be both lighter and cheaper than equivalent large areas of PV cells. Several options were studied by Boeing corporation.[15] In their Fig. 4. captioned "Architecture 4. GEO Harris Wheel", the authors describe a system of solar mirrors used to augment the power of some nearby solar collectors, from which the power is then transmitted to receiver stations on earth.

Space reflectors for night illumination

Another advanced space concept proposal is the notion of space reflectors which reflect sunlight on to small spots on the night side of the Earth to provide night time illumination. An early proponent of this concept was Dr. Krafft Arnold Ehricke, who wrote about systems called "Lunetta", "Soletta", "Biosoletta" and "Powersoletta".[16][17]

A preliminary series of experiments called Znamya ("Banner") was performed by Russia, using solar sail prototypes that had been repurposed as mirrors. Znamya-1 was a ground test. Znamya-2 was launched aboard the Progress M-15 resupply mission to the Mir space station on 27 October 1992. After undocked from Mir, the Progress deployed the reflector.[18][19] This mission was successful in that the mirror deployed, although it did not illuminate the Earth.[citation needed] The next flight Znamya-2.5 failed.[20][21] Znamya-3 never flew.

In 2018, Chengdu, China, announced plans to place three solar reflectors in orbit around the Earth in hopes of reducing the amount of electricity required to power streetlights.[22] Skepticism has been voiced regarding the technological feasibility of the plan.[23]

See also

References

  1. ^ NASA Glenn Research Center, 1987 Phase II Small Business Research Program, "Improved Mirror Facet," Solar Kinetics, Dallas, TX archived summary Archived 2019-06-05 at the Wayback Machine
  2. ^ "Solar mirror, process for its manufacture and its use". December 12, 1993. Retrieved 2007-05-03.
  3. ^ a b Wang, Brian (3 December 2014). "Breakthrough in passive mirror cooling can save 15% of the energy used by buildings in the USA". Next Big Future.
  4. ^ Leonov, E; Chernykh, A; Shanin, Yu (2021). "Heat transfer in laser passive and deformable mirrors". Journal of Physics: Conference Series. 2088 (1): 012042. Bibcode:2021JPhCS2088a2042L. doi:10.1088/1742-6596/2088/1/012042. S2CID 244571579.
  5. ^ El Boujdaini, Latifa; Merzrhab, Ahmed; Amine Moussaoui, Mohammed; Antonio Carballo Lopez, Jose; Wolfertstetter, Fabian (October 2022). "The effect of soiling on the performance of solar mirror materials: Experimentation and modeling". Sustainable Energy Technologies and Assessments. 53 (C). doi:10.1016/j.seta.2022.102741 – via Elsevier.
  6. ^ a b Lim, XiaoZhi (31 December 2019). "The super-cool materials that send heat to space". Nature.
  7. ^ Dana, Joe (20 June 2022). "A nonprofit is using mirrors as a climate solution to a heating planet. Could MEER be in Arizona's future?". 12News. Retrieved 21 September 2022.
  8. ^ "Sandia Labs - CSP Technologies Overview". Archived from the original on 2004-10-26. Retrieved 2005-01-03.
  9. ^ PowerTower The large design developed by Sandia National Labs Archived 2004-11-17 at the Wayback Machine
  10. ^ Sandia Lab - Solar Dish Engine Archived 2004-11-17 at the Wayback Machine
  11. ^ Sandia Lab - Trough System Archived 2004-10-28 at the Wayback Machine
  12. ^ Mason, Lee S.; Richard K. Shaltens; James L. Dolce; Robert L. Cataldo (Jan 2002). "Status of Brayton Cycle Power Conversion Development at NASA GRC" (PDF). NASA Glenn Research Center. NASA TM-2002-211304. Archived from the original (PDF) on 2006-10-13. Retrieved 2007-02-25.
  13. ^ Yoon, Sewang; Vahan Garboushian (n.d.). "Reduced Temperature Dependence of High-Concentration Photovoltaic Solar Cell Open-Circuit Voltage (Voc) at High Concentration Levels". Amonix Corp. Archived from the original on 2007-02-02. Retrieved 2007-02-25.
  14. ^ G. Landis, D. Belgiovani, and D. Scheiman, “Temperature Coefficient of Multijunction Space Solar Cells as a Function of Concentration,” 37th IEEE Photovoltaic Specialists Conference, Seattle WA, June 19–24, 2011.
  15. ^ Potter, Seth D.; Harvey J. Willenberg; Mark W. Henley; Steven R. Kent (May 6, 1999). "Architecture Options for Space Solar Power" (PDF). High Frontier Conference XIV. Princeton, NJ, U.S.A.: Space Studies Institute. Retrieved 2007-02-25.
  16. ^ Ehricke, Krafft Arnold (September 1–4, 1999). "Power Soletta: An industrial sun for Europe - Possibilities for an economically feasible supply with solar energy". Raumfahrtkongress, 26th (in German). Vol. 14. Berlin, West Germany: Hermann-Oberth-Gesellschaft. pp. 85–87. Bibcode:1977hogr...14...85E.
  17. ^ Ehricke, Krafft Arnold (January–February 1978). "The Extraterrestrial Imperative". Air University Review. XXIX (2). United States Air Force. Archived from the original on 2020-02-24. Retrieved 2007-02-25.
  18. ^ McDowell, Jonathan (1993-02-10). "Jonathan's Space Report - No 143 - Mir". Jonathan's Space Report. Jonathan McDowell. Archived from the original on 2012-12-06. Retrieved 2007-02-25.
  19. ^ Wade, Mark (n.d.). "Mir EO-12". Encyclopedia Astronautica. Mark Wade. Archived from the original on February 17, 2004. Retrieved 2007-02-25.
  20. ^ BBC, Sci/Tech: Znamya falls to Earth, February 4, 1999 (accessed 2011-08-24)
  21. ^ Wade, Mark (n.d.). "Mir News 453: Znamya 2.5". Encyclopedia Astronautica. Mark Wade. Archived from the original on 2007-09-30. Retrieved 2007-02-25.
  22. ^ Xiao, Bang (2018-10-18). "China plans to launch artificial moon bright enough to replace streetlights by 2020". ABC News. Retrieved 2019-10-04.
  23. ^ Scharping, Nathaniel (October 26, 2018). "Why China's artificial moon probably won't work". Astronomy.com. Retrieved 2020-09-18.

Read other articles:

Arrondissement in Nord, HaitiSaint-Raphaël Arrondissement Sen Rafayèl AwondismanArrondissementCountry HaitiDepartmentNordArea[1] • Arrondissement557.58 km2 (215.28 sq mi) • Urban4.71 km2 (1.82 sq mi) • Rural552.87 km2 (213.46 sq mi)Population (2015)[1] • Arrondissement169,867 • Density300/km2 (790/sq mi) • Urban55,681 • Rural114,186T...

 

United Regional Basketball LeagueSportBasketballFounded2004Ceased2005No. of teams5Country PhilippinesContinentFIBA Asia (Asia)Lastchampion(s)M. Lhuillier-Kwarta Padala-Cebu The United Regional Basketball League (URBL) was a community-based amateur basketball league in the Philippines that played only one season in 2004. The league was managed by persons identified with the old Metropolitan Basketball Association (MBA), a professional community-based league that suspended operations in th...

 

Quäkerstern als AFSC-Logo Das American Friends Service Committee (AFSC) wurde während des Ersten Weltkriegs 1917 gegründet. Seine Mitglieder sind Quäker, die aus Glaubensgründen den Wehrdienst verweigern. Das AFSC organisierte zivile Friedensdienste. Dabei konzentrierten sie sich auf medizinische Versorgung und die Verteilung von Lebensmitteln und Kleidung. Hierbei machten sie keinen Unterschied zwischen Sieger und Besiegten. Nach Ende beider Weltkriege sorgten sie für das Überleben vo...

2014 American filmFree The NippleFilm posterDirected byLina EscoWritten byHunter RichardsProduced byLisa AzuelosLina EscoGigi GraffLeah KilpatrickJulien MadonHunter RichardsStarringCasey LaBowMonique ColemanZach GrenierLina EscoLola KirkeMichael PanesCinematographyBerenice EvenoEdited byMatt LandonMusic byNick LittlemorePeter MayesHenry HeyProductioncompaniesBethsabée MuchoDisruptive FilmsEmotion PicturesDistributed byIFC FilmsWTFilmsRelease date December 12, 2014 (2014-12-12)...

 

Lighthouse in Virginia, United States LighthouseCherrystone Bar Light LocationSW of Cape Charles, Virginia harbor in the Chesapeake BayCoordinates37°15′23″N 76°01′57″W / 37.2564°N 76.0324°W / 37.2564; -76.0324TowerFoundationscrew-pileConstructioncast-iron/woodShapehexagonal houseLightFirst lit1858Deactivated1919Lensfourth-order Fresnel lens The Cherrystone Bar Light was a lighthouse located at the entrance to Cape Charles, Virginia harbor in the Chesape...

 

French airline French Bee IATA ICAO Callsign BF FBU FRENCH BEE FoundedMarch 2016; 7 years ago (2016-03) (as French Blue)Commenced operations10 September 2016; 7 years ago (2016-09-10) (as French Blue)30 January 2018; 5 years ago (2018-01-30) (as French Bee)Operating basesParis–OrlyFleet size6Destinations7Parent companyGroupe Dubreuil [fr]HeadquartersBellevigny, FranceKey peopleMarc Rochet (President and CEO)Websitewww.f...

Northern side of Mount Everest This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: North Face Everest – news · newspapers · books · scholar · JSTOR (April 2023) North face of Mount Everest The North Face is the northern side of Mount Everest.[1] George Mallory's body was found on the North...

 

Species of gastropod Rustic limpet Patella rustica on rocks ventral view of Patella rustica Scientific classification Kingdom: Animalia Phylum: Mollusca Class: Gastropoda (unranked): clade Patellogastropoda Superfamily: Patelloidea Family: Patellidae Genus: Patella Species: P. rustica Binomial name Patella rusticaLinnaeus, 1758 Synonyms[1] Patella gorgonica da Costa, 1771 Patella lusitanica Gmelin 1791 Patella lusitanica var. minor Marion, 1883 Patella nigropunctata Reeve, 1854 P...

 

2020 American filmNatalie Wood: What Remains BehindPosterDirected byLaurent BouzereauProduced byLaurent BouzereauManoah BowmanNatasha Gregson WagnerCinematographySean HillTravers JacobsToby ThiermannSteven WacksEdited byJason SummersMusic byJeremy TurnerProductioncompaniesNedland MediaAmblin TelevisionHBO Documentary FilmsDistributed byHBO MaxRelease dates January 27, 2020 (2020-01-27) (Sundance) May 5, 2020 (2020-05-05) (HBO Max) Running time100 minutesC...

2022 French filmThe Worst OnesTheatrical release posterFrenchLes Pires Directed byLise AkokaRomane GueretScreenplay byLise AkokaRomane GueretElénore GurreyProduced byMarine AlaricFrédéric JouveCinematographyEric DumontEdited byAlbertine LasteraMusic bySebastien PanProductioncompanies Les Films Velvet France 3 Cinéma Pictanovo Distributed byPyramide DistributionRelease dates 22 May 2022 (2022-05-22) (Cannes) 7 December 2022 (2022-12-07) (France) Runnin...

 

テレビ番組・中継内での各種情報(終了した番組・中継を含みます)は、DVDやBlu-rayなどでの販売や公式なネット配信、または信頼できる紙媒体またはウェブ媒体が紹介するまで、出典として用いないで下さい。検証可能性に基づき除去される場合があります。 芸能人親族生活保護受給騒動(げいのうじん しんぞくせいかつほごじゅきゅうそうどう)とは、2012年に、複...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (مارس 2021) هذه المقالة تحتاج للمزيد من الوصلات للمقالات الأخرى للمساعدة في ترابط مقالات الموسوعة. فضلًا ساعد في تحسين...

Gempa bumi Sulawesi Juli 2006Waktu UTC??ISCUSGS-ANSSTanggal *23 Juli 2006 (2006-07-23)Tanggal setempatWaktu setempatKekuatan6.1 Mw[1]Wilayah bencanaIndonesiaKorbanTidak ada laporan* Usang Lihat dokumentasi. Gempa bumi Sulawesi Juli 2006 terhadu dengan kekuatan magnitudo 6.1,[1][2][3] gempa bumi ini terjadi di Sulawesi wilayah Indonesia. Gempa bumi ini terjadi pada 23 Juli 2006 pada pukul 08:22 UTC (16:22 waktu lokal).[1 ...

 

Bacukiki BaratKecamatanNegara IndonesiaProvinsiSulawesi SelatanKotaPareparePemerintahan • CamatAndi Erwin Pallawarukka, S.STP, M.SiPopulasi • Total39,329 jiwa jiwaKode Kemendagri73.72.04 Kode BPS7372011 Luas- km²Desa/kelurahan6 Bacukiki Barat adalah sebuah kecamatan di Kota Parepare, Sulawesi Selatan, Indonesia. Wilayah administratif Peta administrasi kecamatan bacukiki barat Kecamatan Bacukiki Barat termasuk salah satu kecamatan di Kota Parepare. Wilayah Kecamat...

 

Pakistani political and social activist Fatehyab Ali Khanفتح یاب علی خانFatehyab Ali KhanBorn1936Hyderabad, India[1]Died26 September 2010Karachi, Pakistan[2]OccupationsPolitical activistSocial activistLawyerYears active1962–2010Notable workPakistan Institute of International Affairs (Chairperson)Mazdoor Kisan Party (President)Students Union of Karachi University (President)Movement for the Restoration of Democracy (Member)[3]SpouseMasuma HasanChildre...

American professional wrestler For other people with the same name, see Thomas Howard (disambiguation). Tom HowardBirth nameThomas Merrett HowardBorn (1969-12-26) December 26, 1969 (age 53)Salt Lake City, Utah, U.S.Professional wrestling careerRing name(s)ZumaKGBThe Big TimeGreen BeretTom HowardBilled height6 ft 4 in (193 cm)Billed weight255 lb (116 kg)Trained byJesse HernandezBill AndersonDebut1994Retired2006 Thomas Merrett Howard (born December 26, 1969) is an American p...

 

Port in UgandaBukasa Inland PortClick on the map for a fullscreen viewLocationCountryUgandaLocationBukasa, Kira Town, Wakiso DistrictCoordinates00°17′23″N 32°40′14″E / 0.28972°N 32.67056°E / 0.28972; 32.67056DetailsType of harbourNatural/Artificial Bukasa Inland Port is a planned inland port in Uganda.[1] Location The port would be located along the northern shores of Lake Victoria, on approximately 500 acres (202 ha) in the neighborhood of Buk...

 

شعبية سبها     الإحداثيات 27°02′00″N 14°26′00″E / 27.033333333333°N 14.433333333333°E / 27.033333333333; 14.433333333333  [1] تقسيم إداري  البلد ليبيا[2]  التقسيم الأعلى ليبيا  العاصمة سبها  رمز جيونيمز 2212774  أيزو 3166 LY-SB[3]  تعديل مصدري - تعديل   مدينة سبها هي إحدى ...

Untuk terminal tipe A di kabupaten Bojonegoro, lihat Terminal Rajekwesi. Untuk terminal tipe B lainnya di kabupaten Bojonegoro, lihat Terminal Temayang dan Terminal Padangan. Terminal BetekTerminal Penumpang Tipe BPapan Nama Terminal BetekLokasiJalan Raya Betek Gondang, Dusun Betek, Desa Gondang, Kecamatan Gondang, Kabupaten Bojonegoro, Provinsi Jawa Timur, Kodepos 62172 IndonesiaKoordinat7°24′11″S 111°52′14″E / 7.402960°S 111.870651°E / -7.402960; 111...

 

KENSOプロフィールリングネーム KENSOKENZOケンゾー・スズキ鈴木 健想鈴木 健三本名 鈴木健三ニックネーム ミスター・パッション極悪ワールド・スタンダード暗闇の総帥ライジングサンスーパールーキー身長 191cm体重 118kg誕生日 (1974-07-25) 1974年7月25日(49歳)出身地 愛知県碧南市所属 フリースポーツ歴 ラグビートレーナー 佐々木健介山本小鉄デビュー 2000年1月4日テンプ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!