Sigma bond

σ bond between two atoms: localization of electron density

In chemistry, sigma bonds (σ bonds) or sigma overlap are the strongest type of covalent chemical bond.[1] They are formed by head-on overlapping between atomic orbitals along the internuclear axis. Sigma bonding is most simply defined for diatomic molecules using the language and tools of symmetry groups. In this formal approach, a σ-bond is symmetrical with respect to rotation about the bond axis. By this definition, common forms of sigma bonds are s+s, pz+pz, s+pz and dz2+dz2 (where z is defined as the axis of the bond or the internuclear axis).[2] Quantum theory also indicates that molecular orbitals (MO) of identical symmetry actually mix or hybridize. As a practical consequence of this mixing of diatomic molecules, the wavefunctions s+s and pz+pz molecular orbitals become blended. The extent of this mixing (or hybridization or blending) depends on the relative energies of the MOs of like symmetry.

1sσ* antibonding molecular orbital in H2 with nodal plane

For homodiatomics (homonuclear diatomic molecules), bonding σ orbitals have no nodal planes at which the wavefunction is zero, either between the bonded atoms or passing through the bonded atoms. The corresponding antibonding, or σ* orbital, is defined by the presence of one nodal plane between the two bonded atoms.

Sigma bonds are the strongest type of covalent bonds due to the direct overlap of orbitals, and the electrons in these bonds are sometimes referred to as sigma electrons.[3]

The symbol σ is the Greek letter sigma. When viewed down the bond axis, a σ MO has a circular symmetry, hence resembling a similarly sounding "s" atomic orbital.

Typically, a single bond is a sigma bond while a multiple bond is composed of one sigma bond together with pi or other bonds. A double bond has one sigma plus one pi bond, and a triple bond has one sigma plus two pi bonds.

—— ———————————————— —————

Atomic

orbitals

Symmetric (s–s and p–p)
sigma bonds between atomic orbitals
A pi bond,
for comparison
—— ———————————————— —————

σs–hybrid

σs–p

Polyatomic molecules

Sigma bonds are obtained by head-on overlapping of atomic orbitals. The concept of sigma bonding is extended to describe bonding interactions involving overlap of a single lobe of one orbital with a single lobe of another. For example, propane is described as consisting of ten sigma bonds, one each for the two C−C bonds and one each for the eight C−H bonds.

Multiple-bonded complexes

Transition metal complexes that feature multiple bonds, such as the dihydrogen complex, have sigma bonds between the multiple bonded atoms. These sigma bonds can be supplemented with other bonding interactions, such as π-back donation, as in the case of W(CO)3(PCy3)2(H2), and even δ-bonds, as in the case of chromium(II) acetate.[4]

Organic molecules

Organic molecules are often cyclic compounds containing one or more rings, such as benzene, and are often made up of many sigma bonds along with pi bonds. According to the sigma bond rule, the number of sigma bonds in a molecule is equivalent to the number of atoms plus the number of rings minus one.

Nσ = Natoms + Nrings − 1

This rule is a special-case application of the Euler characteristic of the graph which represents the molecule.

A molecule with no rings can be represented as a tree with a number of bonds equal to the number of atoms minus one (as in dihydrogen, H2, with only one sigma bond, or ammonia, NH3, with 3 sigma bonds). There is no more than 1 sigma bond between any two atoms.

Molecules with rings have additional sigma bonds, such as benzene rings, which have 6 C−C sigma bonds within the ring for 6 carbon atoms. The anthracene molecule, C14H10, has three rings so that the rule gives the number of sigma bonds as 24 + 3 − 1 = 26. In this case there are 16 C−C sigma bonds and 10 C−H bonds.

This rule fails in the case of molecules which, when drawn flat on paper, have a different number of rings than the molecule actually has - for example, Buckminsterfullerene, C60, which has 32 rings, 60 atoms, and 90 sigma bonds, one for each pair of bonded atoms; however, 60 + 32 - 1 = 91, not 90. This is because the sigma rule is a special case of the Euler characteristic, where each ring is considered a face, each sigma bond is an edge, and each atom is a vertex. Ordinarily, one extra face is assigned to the space not inside any ring, but when Buckminsterfullerene is drawn flat without any crossings, one of the rings makes up the outer pentagon; the inside of that ring is the outside of the graph. This rule fails further when considering other shapes - toroidal fullerenes will obey the rule that the number of sigma bonds in a molecule is exactly the number of atoms plus the number of rings, as will nanotubes - which, when drawn flat as if looking through one from the end, will have a face in the middle, corresponding to the far end of the nanotube, which is not a ring, and a face corresponding to the outside.

See also

References

  1. ^ Moore, John; Stanitski, Conrad L.; Jurs, Peter C. (2009-01-21). Principles of Chemistry: The Molecular Science. Cengage Learning. ISBN 9780495390794.
  2. ^ Clayden, Jonathan; Greeves, Nick; Warren, Stuart (March 2012) [2002]. Organic Chemistry (2nd ed.). Oxford: OUP Oxford. pp. 101–136. ISBN 978-0199270293.
  3. ^ Keeler, James; Wothers, Peter (May 2008). Chemical Structure and Reactivity (1st ed.). Oxford: OUP Oxford. pp. 27–46. ISBN 978-0199289301.
  4. ^ Kubas, Gregory (2002). "Metal Dihydrogen and σ-Bond Complexes: Structure, Theory, and Reactivity". J. Am. Chem. Soc. 124 (14): 3799–3800. doi:10.1021/ja0153417.

Read other articles:

  Merremia aegyptia TaxonomíaReino: PlantaeSubreino: TracheobiontaDivisión: MagnoliophytaClase: MagnoliopsidaSubclase: AsteridaeOrden: SolanalesFamilia: ConvolvulaceaeTribu: MerremieaeGénero: MerremiaEspecie: Merremia aegyptia(L.) Urb.[editar datos en Wikidata] Merremia aegyptia es una especie de planta trepadora perteneciente a la familia Convolvulaceae. Vista de la planta Flor Descripción Son plantas trepadoras perennes; con tallos herbáceos, volubles, generalmente hirsu...

 

Para otros usos de este término, véase Mimo (desambiguación). El mimo francés Marcel Marceau en 1977. Un mimo (del griego antiguo,[1]​ ‘mimos’, imitador, actor)[2]​ es alguien que utiliza la mímica como medio teatral o como una acción artística, o representa una historia a través de gestos faciales o movimientos del cuerpo, sin uso del discurso o expresión verbal.[3]​[4]​[a]​ Orígenes Puede concederse al mimo teatral un origen genérico en el «μ�...

 

Funiculaire SchlossbergbahnPrésentationType Funiculaire, bien culturelGestionnaire GVB (d)Patrimonialité Objet classé monument historique (en)LocalisationLocalisation Graz AutricheCoordonnées 47° 04′ 30″ N, 15° 26′ 07″ Emodifier - modifier le code - modifier Wikidata Le Schlossbergbahn, ou Schloßbergbahn est un funiculaire de la ville autrichienne de Graz. Il relie le centre-ville à la colline du Schloßberg, avec une vue imprenable sur la vi...

 

Túpac Amaru III Diputado constituyente de la República del Perúpor Lampa, (Puno) 14 de julio de 1855-2 de noviembre de 1857 Diputado de la República del Perúpor Lampa, (Puno) 16 de abril de 1845-17 de noviembre de 1853 Información personalNacimiento 24 de junio de 1808Vilque, Intendencia de Puno, Virreinato de PerúFallecimiento 3 de enero de 1868 (60 años)Pusi, Puno, PerúNacionalidad peruanaperuanaFamiliaPadres Mariano Bustamante y JiménezAgustina Dueñas y VeraInformación profesio...

 

Polish linguist and lexicographer Not to be confused with Alexander Brückner. Aleksander BrücknerBorn(1856-01-29)29 January 1856Brzeżany, Galicia, Austrian Empire (now Berezhany, Ukraine)Died24 May 1939(1939-05-24) (aged 83)Berlin, GermanyNationalityPolishOccupation(s)Scholar of Slavic languages and literatures (Slavistics), philologist, lexicographer and historian of literature Aleksander Brückner (Polish pronunciation: [alɛkˈsandɛr ˈbryknɛr]; 29 January 1856 – 2...

 

1930 film by Thornton Freeland WhoopeeTheatrical release posterDirected byThornton FreelandWritten byWilliam M. ConselmanE.J. Rath (story) Robert Hobart Davis (story)Owen Davis (play)William Anthony McGuire (musical)Produced bySamuel Goldwyn Florenz ZiegfeldStarringEddie CantorEthel ShuttaEleanor HuntCinematographyLee GarmesRay RennahanGregg TolandEdited byStuart HeislerMusic byNacio Herb BrownWalter DonaldsonEdward EliscuColor processTechnicolorProductioncompanySamuel Goldwyn ProductionsDist...

 

смт Черняхів Герб Черняхова Прапор Черняхова Центральний майдан ЧерняховаЦентральний майдан Черняхова Країна  Україна Область Житомирська область Район Житомирський район Громада Черняхівська селищна громада Код КАТОТТГ: Облікова картка смт Черняхів  Основн...

 

العلاقات السويسرية النيجيرية سويسرا نيجيريا   سويسرا   نيجيريا تعديل مصدري - تعديل   العلاقات السويسرية النيجيرية هي العلاقات الثنائية التي تجمع بين سويسرا ونيجيريا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقا�...

 

Species of shark Milk shark Conservation status Vulnerable (IUCN 3.1)[1] Scientific classification Domain: Eukaryota Kingdom: Animalia Phylum: Chordata Class: Chondrichthyes Subclass: Elasmobranchii Subdivision: Selachimorpha Order: Carcharhiniformes Family: Carcharhinidae Genus: Rhizoprionodon Species: R. acutus Binomial name Rhizoprionodon acutus(Rüppell, 1837) Range of the milk shark Synonyms Carcharias aaronis Hemprich & Ehrenberg, 1899 Carcharias acutus Rüppell, 1...

 

Innuendo Queen Veröffentlichung 14. Januar 1991[1] Länge 6:30 Genre(s) Progressive Rock, Hard Rock Autor(en) QueenFreddie Mercury, Roger Taylor Label Parlophone, Hollywood Album Innuendo Für das Singlecover verwendete Grafik (Grandville, 1844) Innuendo (englisch für „Andeutung“ oder „Anspielung“) ist ein Rocksong der britischen Band Queen. Es wurde am 14. Januar 1991 als Single des gleichnamigen Albums ausgekoppelt und erreichte als dritte Queen-Single nach Bohemian Rhapso...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2015) لينوفو أيديا تاب إيه 3000ملف:Lenovo-ideatab-a3000.jpgمعلومات عامةالنوع حاسوب لوحيالصانع لينوفوعائلة المنتج تاب إيه (بالإنجليزية: TAB A)‏الجيل الجيل الثالثالتوفر في السو�...

 

Rujak India Malaysia, atau dikenali sebagai Pasembur. Masakan India Malaysia, atau masakan masyarakat etnis India di Malaysia, terdiri dari adaptasi hidangan otentik dari India, serta kreasi asli yang terinspirasi oleh budaya makanan Malaysia yang beragam. Karena sebagian besar komunitas India Malaysia adalah keturunan India Selatan, dan sebagian besar adalah etnis Tamil yang merupakan keturunan imigran dari wilayah bersejarah yang terdiri dari negara bagian Tamil Nadu di India modern dan Pro...

 

American television series For the film, see All Is Forgiven (film). All Is ForgivenCreated by Howard Gewirtz Ian Praiser Starring Bess Armstrong Carol Kane Terence Knox Shawnee Smith Valerie Landsburg David Alan Grier ComposerRobert KraftCountry of originUnited StatesOriginal languageEnglishNo. of seasons1No. of episodes9 (list of episodes)ProductionExecutive producers James Burrows Glen Charles Les Charles Camera setupMulti-cameraRunning time30 minutesProduction companies Charles/Burrows/Ch...

 

Mountain in the state of Utah Nagunt MesaNagunt Mesa from the westHighest pointElevation7,785 ft (2,373 m)[1]Prominence905 ft (276 m)[1]Parent peakTimber Top Mountain (8,055 ft)[1]Isolation0.90 mi (1.45 km)[2]Coordinates37°26′27″N 113°10′10″W / 37.440949°N 113.169538°W / 37.440949; -113.169538[1]GeographyNagunt MesaLocation in UtahShow map of UtahNagunt MesaNagunt Mesa (the United St...

 

HeathcoteNew South Wales—Legislative AssemblyInteractive map of district boundaries from the 2023 state electionStateNew South WalesDates current1971–19911999–presentMPMaryanne StuartPartyLaborNamesakeHeathcote, New South WalesElectors56,158 (2019)Area407.04 km2 (157.2 sq mi)DemographicOuter-metropolitan Electorates around Heathcote: Holsworthy Miranda Miranda Campbelltown Heathcote Cronulla Wollondilly Keira Pacific Ocean Heathcote is an electoral district of the Le...

 

Internet Relay Chat (IRC) client for Microsoft Windows mIRCScreenshot of an unmodified mIRC 7.27 running on Windows 7Original author(s)Khaled Mardam-BeyDeveloper(s)mIRC Co. Ltd.Initial release28 February 1995 (1995-02-28)Stable release7.75[1]  / 26 August 2023 Written inC/C++[2]Operating systemWindows XP and laterPlatformIA-32TypeIRC clientLicenseProprietary/TrialwareWebsitewww.mirc.com mIRC (Arabic: إم آي آر سي) is an Internet Relay Chat (IRC) clie...

 

邯新片母语国家和地区中国語系汉藏语系 漢語族晋語邯新片語言代碼ISO 639-3–Glottolog无晉語邯新片在中國的分布位置(蓝色) 邯新片是晋语的八个片之一,以邯郸话和新乡话为代表。使用于中国大陆山西省与河南省,河北省交界的邯郸市、晋城市、新乡市、焦作市、济源市、安阳市、鹤壁市等地的太行山区,属于晋语与冀鲁官话,中原官话的过渡方言,特点是: 平聲分陰�...

 

1924 film by D. W. Griffith For the British film, see Isn't Life Wonderful! Isn't Life WonderfulLobby cardDirected byD. W. GriffithWritten byD. W. GriffithBased onIsn’t Life Wonderful?by Geoffrey MossProduced byD. W. GriffithStarringCarol DempsterNeil HamiltonCinematographyHendrik Sartov [fr]Harold S. SintzenichMusic byLouis SilversCesare SoderoProductioncompanyD.W. Griffith ProductionsDistributed byUnited ArtistsRelease date November 23, 1924 (1924-11-23) Runnin...

 

2009 studio album by The Empire Shall FallAwakenStudio album by The Empire Shall FallReleasedNovember 17, 2009RecordedProvidence, Rhode Island, United StatesGenreMetalcoreLength39:34LabelAngle Side SideProducerMarcus de LisleThe Empire Shall Fall chronology The Empire Shall Fall Demo(2008) Awaken(2009) Singles from Awaken Lords of WarReleased: 2010 Professional ratingsReview scoresSourceRatingSputnikmusic[1] Awaken is the debut studio album by The Empire Shall Fall, released o...

 

Volcano in New Zealand Aerial view of Maungataketake in 1964 Satellite view of Maungataketake after being quarried (2016) Maungataketake (also Ellett's Mount) is one of the volcanoes in the Auckland volcanic field in New Zealand. It had a 76 m high scoria cone, beside a 100 m wide crater, before they were quarried away. It was the site of a pā. Layers of volcanic tuff and ash from Maungataketake overlay the fallen trunks of the nearby Ihumātao fossil forest. The New Zealand Minist...