Sigma-additive set function

In mathematics, an additive set function is a function mapping sets to numbers, with the property that its value on a union of two disjoint sets equals the sum of its values on these sets, namely, If this additivity property holds for any two sets, then it also holds for any finite number of sets, namely, the function value on the union of k disjoint sets (where k is a finite number) equals the sum of its values on the sets. Therefore, an additive set function is also called a finitely additive set function (the terms are equivalent). However, a finitely additive set function might not have the additivity property for a union of an infinite number of sets. A σ-additive set function is a function that has the additivity property even for countably infinite many sets, that is,

Additivity and sigma-additivity are particularly important properties of measures. They are abstractions of how intuitive properties of size (length, area, volume) of a set sum when considering multiple objects. Additivity is a weaker condition than σ-additivity; that is, σ-additivity implies additivity.

The term modular set function is equivalent to additive set function; see modularity below.

Additive (or finitely additive) set functions

Let be a set function defined on an algebra of sets with values in (see the extended real number line). The function is called additive or finitely additive, if whenever and are disjoint sets in then A consequence of this is that an additive function cannot take both and as values, for the expression is undefined.

One can prove by mathematical induction that an additive function satisfies for any disjoint sets in

σ-additive set functions

Suppose that is a σ-algebra. If for every sequence of pairwise disjoint sets in holds then is said to be countably additive or 𝜎-additive. Every 𝜎-additive function is additive but not vice versa, as shown below.

τ-additive set functions

Suppose that in addition to a sigma algebra we have a topology If for every directed family of measurable open sets we say that is -additive. In particular, if is inner regular (with respect to compact sets) then it is τ-additive.[1]

Properties

Useful properties of an additive set function include the following.

Value of empty set

Either or assigns to all sets in its domain, or assigns to all sets in its domain. Proof: additivity implies that for every set If then this equality can be satisfied only by plus or minus infinity.

Monotonicity

If is non-negative and then That is, is a monotone set function. Similarly, If is non-positive and then

Modularity

A set function on a family of sets is called a modular set function and a valuation if whenever and are elements of then The above property is called modularity and the argument below proves that additivity implies modularity.

Given and Proof: write and and where all sets in the union are disjoint. Additivity implies that both sides of the equality equal

However, the related properties of submodularity and subadditivity are not equivalent to each other.

Note that modularity has a different and unrelated meaning in the context of complex functions; see modular form.

Set difference

If and is defined, then

Examples

An example of a 𝜎-additive function is the function defined over the power set of the real numbers, such that

If is a sequence of disjoint sets of real numbers, then either none of the sets contains 0, or precisely one of them does. In either case, the equality holds.

See measure and signed measure for more examples of 𝜎-additive functions.

A charge is defined to be a finitely additive set function that maps to [2] (Cf. ba space for information about bounded charges, where we say a charge is bounded to mean its range is a bounded subset of R.)

An additive function which is not σ-additive

An example of an additive function which is not σ-additive is obtained by considering , defined over the Lebesgue sets of the real numbers by the formula where denotes the Lebesgue measure and the Banach limit. It satisfies and if then

One can check that this function is additive by using the linearity of the limit. That this function is not σ-additive follows by considering the sequence of disjoint sets for The union of these sets is the positive reals, and applied to the union is then one, while applied to any of the individual sets is zero, so the sum of is also zero, which proves the counterexample.

Generalizations

One may define additive functions with values in any additive monoid (for example any group or more commonly a vector space). For sigma-additivity, one needs in addition that the concept of limit of a sequence be defined on that set. For example, spectral measures are sigma-additive functions with values in a Banach algebra. Another example, also from quantum mechanics, is the positive operator-valued measure.

See also

This article incorporates material from additive on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

References

  1. ^ D. H. Fremlin Measure Theory, Volume 4, Torres Fremlin, 2003.
  2. ^ Bhaskara Rao, K. P. S.; Bhaskara Rao, M. (1983). Theory of charges: a study of finitely additive measures. London: Academic Press. p. 35. ISBN 0-12-095780-9. OCLC 21196971.

Read other articles:

ArachnidaRentang fosil: 430–0 jtyl PreЄ Є O S D C P T J K Pg N Silur awal – Saat ini Arachnida dari buku Ernst Haeckel, Kunstformen der Natur, 1904 Klasifikasi ilmiah Kerajaan: Animalia Filum: Arthropoda Subfilum: Chelicerata Kelas: ArachnidaCuvier, 1812 Ordo Acarina Acariformes Ixodida Amblypygi Araneae †Haptopoda Opiliones Palpigradi Parasitiformes †Phalangiotarbida Pseudoscorpionida Ricinulei Schizomida Scorpiones Solifugae Uropygi Arachnida adalah kelas hewan invertebrata A...

 

Semenanjung Banksia merupakan sebuah semenanjung di Victoria, Australia. Terletak pada koordinat 37°56′S 147°41′E / 37.933°S 147.683°E / -37.933; 147.683, sekitar 15 kilomter (9 mi) selatan Bairnsdale di sisi utara Danau Gippsland. Sebuah semenanjung panjang, sempit, dan berpasir ini merupakan situs Duck Arm, teluk populer dengan tiga puluh rumah dan sejumlah kamp sekolah. Namaya merujuk pada genus tanaman Banksia, yang tumbuh di daerah itu. Catatan kaki Banksi...

 

Pour les articles homonymes, voir Guerres polono-turques. Grande guerre turque Scène de la guerre austro-turque, 1683. Informations générales Date 1683 – 1699 Lieu Hongrie – Balkans Casus belli Attaque des Turcs ottomans sur Vienne Issue Traité de Karlowitz Changements territoriaux Hongrie – Transylvanie – Slavonie – Morée – Podolie Belligérants Empire ottoman et ses vassaux:  Khanat de Crimée Tatars Nogaïs Principauté de Moldavie Principauté de Valachie Principaut...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (نوفمبر 2013) سيم سيتي سوسيال المطور ماكسيس سوفتوير الناشر إلكترونيك آرتس الموزع إلكترونيك آرتس  سلسلة اللعبة سيم سيتي النظام فيس بوك تاریخ الإصدار يونيو 25, 2012 نوع اللع

 

〈假如奇異博士失去愛人而非雙手〉What If... Doctor Strange Lost His Heart Instead of His Hands?《無限可能:假如…?》分集宣傳海報剧集编号第1季第4集导演布萊恩·安德魯斯(英语:Bryan Andrews (storyboard artist))编剧A·C·布拉德利(英语:A.C. Bradley (screenwriter))制作人A·C·布拉德利剪接喬爾·費舍爾(Joel Fisher)首发日期2021年9月1日 (2021-09-01)长度36分鐘客串演员 班奈狄克·康柏拜區 聲

 

TJAP1 المعرفات الأسماء المستعارة TJAP1, PILT, TJP4, tight junction associated protein 1 معرفات خارجية الوراثة المندلية البشرية عبر الإنترنت 612658 MGI: MGI:1921344 HomoloGene: 12534 GeneCards: 93643 علم الوجود الجيني الوظيفة الجزيئية • ‏GO:0001948، ‏GO:0016582 ربط بروتيني المكونات الخلوية • سيتوبلازم• موصل خلوي• جسيم داخلي• trans-...

Diagram[pranala nonaktif permanen] dari sebuah kromosom eukariota selama metafase setelah mengalami replikasi dan kondensasi (pemadatan). (1) Kromatid — salah satu dari dua bagian identik dari kromosom setelah fase S. (2) Sentromer — titik dua kromatid bersentuhan. (3) Lengan pendek (p). (4) Lengan panjang (q).Bagian dari seriGenetika   Komponen penting Kromosom DNA RNA Genom Pewarisan Mutasi Nukleotida Variasi Garis besar Indeks Sejarah dan topik Pengantar Sejarah ...

 

Suburban of Chennai city in Chengalpattu, Tamil Nadu, IndiaMamallapuram MahabalipuramSuburban of Chennai cityMamallapuramThe town of MahabalipuramMamallapuramCoordinates: 12°37′11″N 80°11′40″E / 12.61972°N 80.19444°E / 12.61972; 80.19444CountryIndiaStateTamil NaduDistrictChengalpattuFounded byKundavai ShivaElevation12 m (39 ft)Population (2011) • Total15,172[1]Languages • OfficialTamilTime zoneUTC+5:30 (IST)PIN...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Peugeot P4 – news · newspapers · books · scholar · JSTOR (January 2013) (Learn how and when to remove this template message) Unarmored SUV, Military light utility vehicle Peugeot P4 French Army P4 in Paris, 2005TypeUnarmored SUV, Military light utility vehicleP...

Dialog Kerja Sama Asia (bahasa Inggris: Asian Cooperation Dialogue disingkat ACD) adalah sebuah badan yang dibentuk pada tahun 2002 untuk mempromosikan kerja sama Asia dalam tingkat antarbenua, yang membantu untuk mengintegrasikan organisasi-organisasi politik atau ekonomi yang terpisah secara regional seperti ASEAN, SAARC atau Dewan Kerja Sama Teluk. Negara-negara anggota Keanggotaan dan perluasan Dialog Kerja Sama Asia. Republik Tiongkok diakui sebagai bagian dari Republik Rakyat Tiongkok. ...

 

Involutive change of basis in linear algebra Walsh transform redirects here. Not to be confused with Walsh matrix. The product of a Boolean function and a Walsh matrix is its Walsh spectrum:[1](1, 0, 1, 0, 0, 1, 1, 0) × H(8) = (4, 2, 0, −2, 0, 2, 0, 2) Fast Walsh–Hadamard transform, a faster way to calculate the Walsh spectrum of (1, 0, 1, 0, 0, 1, 1, 0). The original function can be expressed by means of its Walsh spectrum as an arithmetical polynomial. The Hadamard transform (a...

 

Initiative populaire fédérale Approvisionnement du pays en blé Déposée le 16 octobre 1926 Contre-projet Accepté[NB 1] Votée le 3 mars 1929 Participation 67,36 % Résultat : rejetée[NB 2] Par le peuple non (par 97,3 %) Par les cantons non (par 19 6/2)[NB 3] modifier  L'initiative populaire « Approvisionnement du pays en blé » est une initiative populaire suisse, rejetée par le peuple et les cantons le 3 mars 1929. Contenu L'initiative propose d'ajouter...

Río Saldaña Vista del ríoUbicación geográficaCuenca Río MagdalenaNacimiento Páramo de Santo DomingoDesembocadura Río MagdalenaCoordenadas 3°59′36″N 74°52′19″O / 3.9933333333333, -74.871944444444Ubicación administrativaPaís Colombia ColombiaDivisión  TolimaCuerpo de aguaAfluentes Amoyá, Atá, Siquila, Mendarco, Candelarito, Cucuana, Anamichú, Lemaya, Ortega, Pole, San Antonio, San Jorge, Tetuán, Cambrín.Longitud 222.5 kmSuperficie de cuenca n/...

 

الملعب الأولمبي برادس فيما يلي قائمة ملاعب كرة القدم في تونس مرتبة حسب سعة المتفرجين. الملعب الأولمبي برادس هو الملعب الذي يتسع لأكبر عدد من المشاهدين في البلاد بسعة 60 ألف متفرج.[1] جدول الملاعب   استضاف الملعب كأس الأمم الأفريقية.   استضاف الملعب نهائي كأس الأ...

 

Spanish naval officer Dionisio Alcalá GalianoBorn(1760-10-08)8 October 1760Cabra, Córdoba, SpainDied21 October 1805(1805-10-21) (aged 45)Cape of Trafalgar, SpainOccupationsNaval officerCartographerExplorerNavigator Dionisio Alcalá Galiano (8 October 1760 – 21 October 1805) was a Spanish naval officer, cartographer, and explorer. He mapped various coastlines in Europe and the Americas with unprecedented accuracy using new technology such as chronometers. He commanded an expeditio...

زم الفضائي   النوع خيال علمي،  ومسلسل كوميدي  [لغات أخرى]‏،  وأدب الرعب  إخراج ستيف راسيل البلد الولايات المتحدة[1]  لغة العمل الإنجليزية  عدد المواسم 2   عدد الحلقات 27   الإنتاج مدة العرض 22 دقيقة الموزع هولو  الإصدار القناة نيكلوديون  بث ل...

 

Драфт НХЛ 1983 Дата 8 июня 1983 г. Место Монреаль, Квебек Выбрано игроков 242 Раундов 12 Первый выбор Брайан Лоутон Команда Миннесота Норт Старз 19821984 Драфт НХЛ 1983 года состоялся в монреальском «Форуме». Содержание 1 Процедура драфта 2 Итоги драфта 3 Статистика драфта 4 Ссылки 5 С...

 

Aniquilación de Michel Houellebecq Género Novela Idioma Francés País Francia Fecha de publicación 7 de enero de 2022 SerieSerotonina Aniquilación[editar datos en Wikidata] Aniquilación, Anéantir en francés [2]​ (/a.ne.ɑ̃.tiʁ/)[3]​ es una novela de Michel Houellebecq, publicada el 7 de enero del 2022 por la editorial Flammarion.[4]​ Durante el lanzamiento de la obra se pusieron a la venta un total de aproximadamente 300.000 copias.[5]​ La nove...

1957 film by Federico Fellini Not to be confused with Cabiria. Nights of CabiriaTheatrical release posterItalianLe notti di Cabiria Directed byFederico FelliniScreenplay by Federico Fellini Ennio Flaiano Tullio Pinelli Pier Paolo Pasolini Story byFederico FelliniProduced byDino De LaurentiisStarring Giulietta Masina François Périer Franca Marzi Dorian Gray Amedeo Nazzari Cinematography Aldo Tonti Otello Martelli Edited byLeo CatozzoMusic byNino RotaDistributed by Paramount Pictures (Italy) ...

 

Österlens kontrakt var ett kontrakt i Lunds stift inom Svenska kyrkan. Kontraktet församlingar verkade inom Simrishamns kommun och Tomelilla kommun. Kontraktet upplöstes 1 januari 2017 då församlingarna överfördes till Vemmenhögs, Ljunits, Herrestads, Färs och Österlens kontrakt.[1]. Kontraktskoden var 0712. Administrativ historik Kontraktet bildades 1962 av en del av Albo och Järrestads kontrakt med Stiby församling som 2017 uppgick i Gärsnäs församling Östra Vemmerlövs för...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!