Semi-differentiability

In calculus, the notions of one-sided differentiability and semi-differentiability of a real-valued function f of a real variable are weaker than differentiability. Specifically, the function f is said to be right differentiable at a point a if, roughly speaking, a derivative can be defined as the function's argument x moves to a from the right, and left differentiable at a if the derivative can be defined as x moves to a from the left.

One-dimensional case

This function does not have a derivative at the marked point, as the function is not continuous there. However, it has a right derivative at all points, with constantly equal to 0.

In mathematics, a left derivative and a right derivative are derivatives (rates of change of a function) defined for movement in one direction only (left or right; that is, to lower or higher values) by the argument of a function.

Definitions

Let f denote a real-valued function defined on a subset I of the real numbers.

If a ∈ I is a limit point of I ∩ [a,∞) and the one-sided limit

exists as a real number, then f is called right differentiable at a and the limit +f(a) is called the right derivative of f at a.

If a ∈ I is a limit point of I ∩ (–∞,a] and the one-sided limit

exists as a real number, then f is called left differentiable at a and the limit f(a) is called the left derivative of f at a.

If a ∈ I is a limit point of I ∩ [a,∞) and I ∩ (–∞,a] and if f is left and right differentiable at a, then f is called semi-differentiable at a.

If the left and right derivatives are equal, then they have the same value as the usual ("bidirectional") derivative. One can also define a symmetric derivative, which equals the arithmetic mean of the left and right derivatives (when they both exist), so the symmetric derivative may exist when the usual derivative does not.[1]

Remarks and examples

  • A function is differentiable at an interior point a of its domain if and only if it is semi-differentiable at a and the left derivative is equal to the right derivative.
  • An example of a semi-differentiable function, which is not differentiable, is the absolute value function , at a = 0. We find easily
  • If a function is semi-differentiable at a point a, it implies that it is continuous at a.
  • The indicator function 1[0,∞) is right differentiable at every real a, but discontinuous at zero (note that this indicator function is not left differentiable at zero).

Application

If a real-valued, differentiable function f, defined on an interval I of the real line, has zero derivative everywhere, then it is constant, as an application of the mean value theorem shows. The assumption of differentiability can be weakened to continuity and one-sided differentiability of f. The version for right differentiable functions is given below, the version for left differentiable functions is analogous.

Theorem —  Let f be a real-valued, continuous function, defined on an arbitrary interval I of the real line. If f is right differentiable at every point a ∈ I, which is not the supremum of the interval, and if this right derivative is always zero, then f is constant.

Proof

For a proof by contradiction, assume there exist a < b in I such that f(a) ≠ f(b). Then

Define c as the infimum of all those x in the interval (a,b] for which the difference quotient of f exceeds ε in absolute value, i.e.

Due to the continuity of f, it follows that c < b and |f(c) – f(a)| = ε(c – a). At c the right derivative of f is zero by assumption, hence there exists d in the interval (c,b] with |f(x) – f(c)| ≤ ε(x – c) for all x in (c,d]. Hence, by the triangle inequality,

for all x in [c,d), which contradicts the definition of c.

Differential operators acting to the left or the right

Another common use is to describe derivatives treated as binary operators in infix notation, in which the derivatives is to be applied either to the left or right operands. This is useful, for example, when defining generalizations of the Poisson bracket. For a pair of functions f and g, the left and right derivatives are respectively defined as

In bra–ket notation, the derivative operator can act on the right operand as the regular derivative or on the left as the negative derivative.[2]

Higher-dimensional case

This above definition can be generalized to real-valued functions f defined on subsets of Rn using a weaker version of the directional derivative. Let a be an interior point of the domain of f. Then f is called semi-differentiable at the point a if for every direction u ∈ Rn the limit

with R exists as a real number.

Semi-differentiability is thus weaker than Gateaux differentiability, for which one takes in the limit above h → 0 without restricting h to only positive values.

For example, the function is semi-differentiable at , but not Gateaux differentiable there. Indeed, with

(Note that this generalization is not equivalent to the original definition for n = 1 since the concept of one-sided limit points is replaced with the stronger concept of interior points.)

Properties

  • Any convex function on a convex open subset of Rn is semi-differentiable.
  • While every semi-differentiable function of one variable is continuous; this is no longer true for several variables.

Generalization

Instead of real-valued functions, one can consider functions taking values in Rn or in a Banach space.

See also

References

  1. ^ Peter R. Mercer (2014). More Calculus of a Single Variable. Springer. p. 173. ISBN 978-1-4939-1926-0.
  2. ^ Dirac, Paul (1982) [1930]. The Principles of Quantum Mechanics. USA: Oxford University Press. ISBN 978-0198520115.
  • Preda, V.; Chiţescu, I. (1999). "On Constraint Qualification in Multiobjective Optimization Problems: Semidifferentiable Case". J. Optim. Theory Appl. 100 (2): 417–433. doi:10.1023/A:1021794505701. S2CID 119868047.

Read other articles:

Harry Potter and the Deathly HallowsDirected byDavid YatesScreenplay bySteve KlovesBased onHarry Potter and the Deathly Hallowsby J. K. RowlingProduced by David Heyman David Barron J. K. Rowling Starring Daniel Radcliffe Rupert Grint Emma Watson Helena Bonham Carter Robbie Coltrane Warwick Davis Ralph Fiennes Michael Gambon Brendan Gleeson Richard Griffiths John Hurt Rhys Ifans Jason Isaacs Gary Oldman Alan Rickman Fiona Shaw Maggie Smith Timothy Spall Imelda Staunton David Thewlis Julie Walt...

 

У Вікіпедії є статті про інших людей із прізвищем Сергєєв. Сергєєв Филимон ІвановичНародився 28 липня 1941(1941-07-28)Шенкурський муніципальний район, Архангельська область, РРФСР, СРСРПомер 31 травня 2021(2021-05-31) (79 років)МоскваКраїна  СРСР РосіяДіяльність акторAlma mater Всеросій

 

2009 studio album by Melissa McClellandVictoria DayStudio album by Melissa McClellandReleased2009GenreAmericana, Canadiana, pop rock[1]LabelSix Shooter RecordsProducerLuke DoucetMelissa McClelland chronology Thumbelina's One Night Stand(2006) Victoria Day(2009) Victoria Day is Melissa McClelland's fourth album. The album was released in 2009 in Canada by Six Shooter Records.[2] Track listing All songs written by Melissa McClelland, except A Girls Can Dream written by L...

بحيرة التمساحالموقع الجغرافي / الإداريالإحداثيات 30°34′40″N 32°17′20″E / 30.5778°N 32.2889°E / 30.5778; 32.2889 دول الحوض مصر هيئة المياهالنوع بحيرة مصب الأنهار قناة السويس منبع الأنهار قناة السويس القياساتالمساحة 14 كيلومتر مربع عمق 1 م حجم المياه 80٬000٬000 متر مكعب تعديل - تعديل مص...

 

Halaman ini berisi artikel tentang perusahaan ritel di Indonesia. Untuk gedung di Jakarta yang merupakan gerai pertama Sarinah, lihat Gedung Sarinah. Untuk halte Transjakarta, lihat Sarinah (Transjakarta). PT SarinahGedung Sarinah pada 24 Februari 2022, setelah direnovasi.SebelumnyaPT Departemen Store Indonesia SarinahJenisAnak perusahaanIndustriRitelDidirikan17 Agustus 1962; 61 tahun lalu (1962-08-17)KantorpusatJakarta Pusat, IndonesiaCabang8Wilayah operasiIndonesiaTokohkunciFetty Kwart...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Tenaga eksogen – berita · surat kabar · buku · cendekiawan · JSTOR Tenaga eksogen yaitu tenaga yang berasal dari luar bumi. Sifat umum tenaga eksogen adalah merombak bentuk permukaan bumi hasil bentukan ...

Bilateral relationsSino–Pakistani relations Pakistan China Diplomatic missionEmbassy of Pakistan, BeijingEmbassy of China, IslamabadEnvoyPakistani Ambassador to China Moin-ul-HaqueChinese Ambassador to Pakistan Nong Rong China–Pakistan relations, also referred to as Chinese-Pakistani relations or Sino–Pakistani relations, refers to the bilateral relations between the Islamic Republic of Pakistan and the People's Republic of China (PRC). Formal relations between China and Pakistan were e...

 

American politician Ludwig TellerMember of the U.S. House of Representativesfrom New York's 20th districtIn officeJanuary 3, 1957 – January 3, 1961Preceded byIrwin D. DavidsonSucceeded byWilliam Fitts RyanMember of the New York State Assembly from New York's 5th districtIn officeJanuary 1, 1951 – December 31, 1956Preceded byMonroe FlegenheimerSucceeded byBentley Kassal Personal detailsBorn(1911-06-22)June 22, 1911New York City, USDiedOctober 4, 1965(1965-10-0...

 

إيما ويليس   معلومات شخصية الميلاد 20 مارس 1976 (47 سنة)  برمينغهام  مواطنة المملكة المتحدة  الطول 1.68 متر  عدد الأولاد 2   الحياة العملية المهنة مقدمة تلفزيونية  اللغة الأم الإنجليزية  اللغات الإنجليزية  موظفة في بي بي سي  المواقع الموقع الموقع الرسمي ...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (July 2017) (Learn how and when to remove this template message) This article contains content that is writte...

 

Site of the first raising of the Philippine flag in Mindanao, Surigao City Hall, Surigao City, Surigao del Norte. This list of historical markers installed by the National Historical Commission of the Philippines (NHCP) in Caraga is an annotated list of people, places, or events in the region that have been commemorated by cast-iron plaques issued by the said commission. The plaques themselves are permanent signs installed in publicly visible locations on buildings, monuments, or in special l...

 

Defunct flying squadron of the Royal Air Force No. 55 Squadron RAFSquadron badgeActive27 April 1917 – 1 April 1918 (RFC)1 April 1918 – 22 January 1920 (RAF)1 February 1920 – 1 November 19461 September 1960 – 15 October 199315 October 1993 – 31 March 19961 November 1996 – 20 January 2011Country United KingdomBranch Royal Air ForceTypeFlying squadronMotto(s)Latin: Nil nos tremefacit(Nothing shakes us)[1][2]Battle honours Western Front (1917–1918)* Arras Ypres ...

Not to be confused with the Ovalia Egg chair by Henrik Thor-Larsen, the Garden Egg by Peter Ghyczy, or the Hanging Egg by Nanna Ditzel. Brand of furniture Egg chairThe Egg ChairDesignerArne JacobsenDate1959MaterialsSteel frame, fabric coverStyle / traditionModernistSold byFritz Hansen (Denmark)Height107 cm (42 in)Width87 cm (34 in)Depth79–95 cm (31–37 in) The Egg is a chair designed by Arne Jacobsen in 1959 for the Radisson SAS hotel in Copenhagen, Denmark. I...

 

For the former grammar school, see St Marylebone Grammar School. Academy in London, EnglandSt Marylebone SchoolAddress64 Marylebone High StreetLondon, W1U 5BAEnglandCoordinates51°31′20″N 0°09′06″W / 51.5221°N 0.1517°W / 51.5221; -0.1517InformationTypeAcademyMottoAn Opportunity To Excel[citation needed]Religious affiliation(s)Church of EnglandEstablished1791; 232 years ago (1791)Department for Education URN137353 TablesOfstedReports...

 

Flat horse race in Ireland This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: Carlingford Stakes – news · newspapers · books · scholar · JSTOR (November 2021) Horse race Carlingford StakesListed raceLocationDundalk StadiumCounty Louth, IrelandRace typeFlat / ThoroughbredWebsiteDundalkRace informationD...

2019 World Wonder Ring Stardom event Stardom Cinderella Tournament 2019Promotional poster of the event featuring various Stardom wrestlersPromotionWorld Wonder Ring StardomDateApril 29, 2019CityTokyo, JapanVenueKorakuen HallAttendance1,050[1]Event chronology ← PreviousStardom American Dream In The Big Apple Next →Stardom Gold May 2019 chronology ← Previous2018 Next →2020 The 2019 Stardom Cinderella Tournament (スターダムシンデレラトーナメン...

 

Berkas:RobinsonHelicopterCompanyLogo.jpg Robinson Helicopter Company, yang berbasis di Zamperini Field di Torrance, California, adalah produsen terbesar dari helikopter sipil di Amerika Utara. 14 November 2011, Robinson memproduksi helikopter nya yang ke 10.000.[1] Model Robinson R22 Robinson R44 Robinson R66 Referensi ^ Robinson Helipads Diarsipkan 2009-12-16 di Wayback Machine.. Robinson Helicopter Company. Accessed May 12, 2010. Pranala luar Wikimedia Commons memiliki media mengena...

 

Disambiguazione – SEGA rimanda qui. Se stai cercando il tipo di tumore, vedi Astrocitoma subependimale a cellule giganti. Questa voce o sezione sugli argomenti aziende di videogiochi e aziende giapponesi non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Sega CorporationLogo La sede principale di Sega a Tokyo Stato Giappone Forma societariaSo...

British conductor Harry ChristophersCBEChristophers during a concert at Versailles, France, 25 June 2012Background informationBirth nameRichard Henry Tudor ChristophersBorn (1953-12-26) 26 December 1953 (age 70)Goudhurst, Kent, EnglandGenresClassical, operaOccupation(s)ConductorYears active1979-presentMusical artist Richard Henry Tudor Harry Christophers CBE FRSCM (born 26 December 1953) is an English conductor. Life and career Richard Henry Tudor Christophers[1] was born in Goud...

 

  此条目页的主題是电影《颐和园》。关于其他同名条目,請見「颐和园」。 頤和園Summer Palace台湾海报基本资料导演婁燁监制方勵耐安西勒万·布兹特恩编剧娄烨梅峰马英力主演郭曉冬郝蕾胡伶张献民配乐裴曼·雅茨达尼安(英语:Peyman Yazdanian)摄影花靑剪辑娄烨曾剑制片商勞雷影業有限公司夢工作電影羅森製片公司梵太奇電影片长140分钟产地 中国大陆语言汉语、德...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!