The publication of the RSA cryptosystem by Rivest, Adi Shamir, and Leonard Adleman in 1978[C1] revolutionized modern cryptography by providing the first usable and publicly described method for public-key cryptography. The three authors won the 2002 Turing Award, the top award in computer science, for this work. The award cited "their ingenious contribution to making public-key cryptography useful in practice".[6] The same paper that introduced this cryptosystem also introduced Alice and Bob, the fictional heroes of many subsequent cryptographic protocols.[7] In the same year, Rivest, Adleman, and Michael Dertouzos first formulated homomorphic encryption and its applications in secure cloud computing,[C2] an idea that would not come to fruition until over 40 years later when secure homomorphic encryption algorithms were finally developed.[8]
In the problem of decision tree learning, Rivest and Laurent Hyafil proved that it is NP-complete to find a decision tree that identifies each of a collection of objects through binary-valued questions (as in the parlor game of twenty questions) and that minimizes the expected number of questions that will be asked.[L1] With Avrim Blum, Rivest also showed that even for very simple neural networks it can be NP-complete to train the network by finding weights that allow it to solve a given classification task correctly.[L3] Despite these negative results, he also found methods for efficiently inferring decision lists,[L2] decision trees,[L4] and finite automata.[L5]
Elections
A significant topic in Rivest's more recent research has been election security, based on the principle of software independence: that the security of elections should be founded on physical records, so that hidden changes to software used in voting systems cannot result in undetectable changes to election outcomes. His research in this area includes improving the robustness of mix networks in this application,[V1] the 2006 invention of the ThreeBallot paper ballot based end-to-end auditable voting system (which he released into public domain in the interest of promoting democracy),[V2][6] and the development of the Scantegrity security system for optical scan voting systems.[V3]
Rivest, Ronald L. (1976). "Partial-match retrieval algorithms". SIAM Journal on Computing. 5 (1): 19–50. doi:10.1137/0205003. MR0395398. Previously announced at the 15th Annual Symposium on Switching and Automata Theory, 1974.
Rivest, Ronald L.; Fiduccia, Charles M. (1982). "A "greedy" channel router". In Crabbe, James S.; Radke, Charles E.; Ofek, Hillel (eds.). Proceedings of the 19th Design Automation Conference, DAC '82, Las Vegas, Nevada, USA, June 14–16, 1982. ACM and IEEE. pp. 418–424. doi:10.1145/800263.809239.
Rivest, R.; Adleman, L.; Dertouzos, M. (1978). "On data banks and privacy homomorphisms". In DeMillo, Richard A. (ed.). Foundations of Secure Computation. Academic Press. pp. 169–177.
Rivest, Ronald L.; Shamir, Adi; Tauman, Yael (2001). "How to Leak a Secret". In Boyd, Colin (ed.). Advances in Cryptology – ASIACRYPT 2001, 7th International Conference on the Theory and Application of Cryptology and Information Security, Gold Coast, Australia, December 9–13, 2001, Proceedings. Lecture Notes in Computer Science. Vol. 2248. Springer. pp. 552–565. doi:10.1007/3-540-45682-1_32.
C8.
Rivest, Ronald L. (1994). "The RC5 encryption algorithm". In Preneel, Bart (ed.). Fast Software Encryption: Second International Workshop. Leuven, Belgium, 14–16 December 1994, Proceedings. Lecture Notes in Computer Science. Vol. 1008. Springer. pp. 86–96. doi:10.1007/3-540-60590-8_7.
^ abSingh, Mona (1996). Learning algorithms with applications to robot navigation and protein folding (PhD thesis). Massachusetts Institute of Technology. hdl:1721.1/40579. OCLC680493381.
^Yi, Xun; Paulet, Russell; Bertino, Elisa (2014). Homomorphic Encryption and Applications. Springer Briefs in Computer Science. Springer International Publishing. doi:10.1007/978-3-319-12229-8. ISBN978-3-319-12228-1. S2CID11182158. See especially p. 47: "The concept of FHE was introduced by Rivest under the name privacy homomorphisms. The problem of constructing a scheme with these properties remained unsolved until 2009, when Gentry presented his breakthrough result."
^Paterson, Mike (1996). "Progress in selection". In Karlsson, Rolf G.; Lingas, Andrzej (eds.). Algorithm Theory – SWAT '96, 5th Scandinavian Workshop on Algorithm Theory, Reykjavík, Iceland, July 3–5, 1996, Proceedings. Lecture Notes in Computer Science. Vol. 1097. Springer. pp. 368–379. doi:10.1007/3-540-61422-2_146.