Riemann xi function
ξ ξ -->
(
s
)
{\displaystyle \xi (s)}
in the complex plane . The color of a point
s
{\displaystyle s}
encodes the value of the function. Darker colors denote values closer to zero and hue encodes the value's argument .
In mathematics , the Riemann xi function is a variant of the Riemann zeta function , and is defined so as to have a particularly simple functional equation . The function is named in honour of Bernhard Riemann .
Definition
Riemann's original lower-case "xi"-function,
ξ ξ -->
{\displaystyle \xi }
was renamed with an upper-case
Ξ Ξ -->
{\displaystyle ~\Xi ~}
(Greek letter "Xi" ) by Edmund Landau . Landau's lower-case
ξ ξ -->
{\displaystyle ~\xi ~}
("xi") is defined as[ 1]
ξ ξ -->
(
s
)
=
1
2
s
(
s
− − -->
1
)
π π -->
− − -->
s
/
2
Γ Γ -->
(
s
2
)
ζ ζ -->
(
s
)
{\displaystyle \xi (s)={\frac {1}{2}}s(s-1)\pi ^{-s/2}\Gamma \left({\frac {s}{2}}\right)\zeta (s)}
for
s
∈ ∈ -->
C
{\displaystyle s\in \mathbb {C} }
. Here
ζ ζ -->
(
s
)
{\displaystyle \zeta (s)}
denotes the Riemann zeta function and
Γ Γ -->
(
s
)
{\displaystyle \Gamma (s)}
is the Gamma function .
The functional equation (or reflection formula ) for Landau's
ξ ξ -->
{\displaystyle ~\xi ~}
is
ξ ξ -->
(
1
− − -->
s
)
=
ξ ξ -->
(
s
)
.
{\displaystyle \xi (1-s)=\xi (s)~.}
Riemann's original function, rebaptised upper-case
Ξ Ξ -->
{\displaystyle ~\Xi ~}
by Landau,[ 1] satisfies
Ξ Ξ -->
(
z
)
=
ξ ξ -->
(
1
2
+
z
i
)
{\displaystyle \Xi (z)=\xi \left({\tfrac {1}{2}}+zi\right)}
,
and obeys the functional equation
Ξ Ξ -->
(
− − -->
z
)
=
Ξ Ξ -->
(
z
)
.
{\displaystyle \Xi (-z)=\Xi (z)~.}
Both functions are entire and purely real for real arguments.
Values
The general form for positive even integers is
ξ ξ -->
(
2
n
)
=
(
− − -->
1
)
n
+
1
n
!
(
2
n
)
!
B
2
n
2
2
n
− − -->
1
π π -->
n
(
2
n
− − -->
1
)
{\displaystyle \xi (2n)=(-1)^{n+1}{\frac {n!}{(2n)!}}B_{2n}2^{2n-1}\pi ^{n}(2n-1)}
where Bn denotes the n -th Bernoulli number . For example:
ξ ξ -->
(
2
)
=
π π -->
6
{\displaystyle \xi (2)={\frac {\pi }{6}}}
Series representations
The
ξ ξ -->
{\displaystyle \xi }
function has the series expansion
d
d
z
ln
-->
ξ ξ -->
(
− − -->
z
1
− − -->
z
)
=
∑ ∑ -->
n
=
0
∞ ∞ -->
λ λ -->
n
+
1
z
n
,
{\displaystyle {\frac {d}{dz}}\ln \xi \left({\frac {-z}{1-z}}\right)=\sum _{n=0}^{\infty }\lambda _{n+1}z^{n},}
where
λ λ -->
n
=
1
(
n
− − -->
1
)
!
d
n
d
s
n
[
s
n
− − -->
1
log
-->
ξ ξ -->
(
s
)
]
|
s
=
1
=
∑ ∑ -->
ρ ρ -->
[
1
− − -->
(
1
− − -->
1
ρ ρ -->
)
n
]
,
{\displaystyle \lambda _{n}={\frac {1}{(n-1)!}}\left.{\frac {d^{n}}{ds^{n}}}\left[s^{n-1}\log \xi (s)\right]\right|_{s=1}=\sum _{\rho }\left[1-\left(1-{\frac {1}{\rho }}\right)^{n}\right],}
where the sum extends over ρ, the non-trivial zeros of the zeta function, in order of
|
ℑ ℑ -->
(
ρ ρ -->
)
|
{\displaystyle |\Im (\rho )|}
.
This expansion plays a particularly important role in Li's criterion , which states that the Riemann hypothesis is equivalent to having λn > 0 for all positive n .
Hadamard product
A simple infinite product expansion is
ξ ξ -->
(
s
)
=
1
2
∏ ∏ -->
ρ ρ -->
(
1
− − -->
s
ρ ρ -->
)
,
{\displaystyle \xi (s)={\frac {1}{2}}\prod _{\rho }\left(1-{\frac {s}{\rho }}\right),\!}
where ρ ranges over the roots of ξ.
To ensure convergence in the expansion, the product should be taken over "matching pairs" of zeroes, i.e., the factors for a pair of zeroes of the form ρ and 1−ρ should be grouped together.
References
^ a b Landau, Edmund (1974) [1909]. Handbuch der Lehre von der Verteilung der Primzahlen [Handbook of the Study of Distribution of the Prime Numbers ] (Third ed.). New York: Chelsea. §70-71 and page 894.
This article incorporates material from Riemann Ξ function on PlanetMath , which is licensed under the Creative Commons Attribution/Share-Alike License .