Rhombic triacontahedron

Rhombic triacontahedron
TypeCatalan solid
Faces30
Edges60
Vertices32
Symmetry groupicosahedral symmetry
Dihedral angle (degrees)144°
Dual polyhedronIcosidodecahedron
Propertiesconvex, face-transitive isohedral, isotoxal, zonohedron
Net
3D model of a rhombic triacontahedron

The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.


A face of the rhombic triacontahedron. The lengths
of the diagonals are in the golden ratio.
This animation shows a transformation from a cube to a rhombic triacontahedron by dividing the square faces into 4 squares and splitting middle edges into new rhombic faces.

The ratio of the long diagonal to the short diagonal of each face is exactly equal to the golden ratio, φ, so that the acute angles on each face measure 2 arctan(1/φ) = arctan(2), or approximately 63.43°. A rhombus so obtained is called a golden rhombus.

Being the dual of an Archimedean solid, the rhombic triacontahedron is face-transitive, meaning the symmetry group of the solid acts transitively on the set of faces. This means that for any two faces, A and B, there is a rotation or reflection of the solid that leaves it occupying the same region of space while moving face A to face B.

The rhombic triacontahedron is somewhat special in being one of the nine edge-transitive convex polyhedra, the others being the five Platonic solids, the cuboctahedron, the icosidodecahedron, and the rhombic dodecahedron.

The rhombic triacontahedron is also interesting in that its vertices include the arrangement of four Platonic solids. It contains ten tetrahedra, five cubes, an icosahedron and a dodecahedron. The centers of the faces contain five octahedra.

It can be made from a truncated octahedron by dividing the hexagonal faces into three rhombi:

A topological rhombic triacontahedron in truncated octahedron

Cartesian coordinates

Let φ be the golden ratio. The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron. Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ±1/φ) and cyclic permutations of these coordinates. All 32 points together are the vertices of a rhombic triacontahedron centered at the origin. The length of its edges is 3 – φ1.17557050458. Its faces have diagonals with lengths 2 and 2/φ.

Dimensions

If the edge length of a rhombic triacontahedron is a, surface area, volume, the radius of an inscribed sphere (tangent to each of the rhombic triacontahedron's faces) and midradius, which touches the middle of each edge are:[1]

where φ is the golden ratio.

The insphere is tangent to the faces at their face centroids. Short diagonals belong only to the edges of the inscribed regular dodecahedron, while long diagonals are included only in edges of the inscribed icosahedron.

Dissection

The rhombic triacontahedron can be dissected into 20 golden rhombohedra: 10 acute ones and 10 obtuse ones.[2][3]

10 10

Acute form

Obtuse form

Orthogonal projections

The rhombic triacontahedron has four symmetry positions, two centered on vertices, one mid-face, and one mid-edge. Embedded in projection "10" are the "fat" rhombus and "skinny" rhombus which tile together to produce the non-periodic tessellation often referred to as Penrose tiling.

Orthogonal projections
Projective
symmetry
[2] [2] [6] [10]
Image
Dual
image

Stellations

Rhombic hexecontahedron
An example of stellations of the rhombic triacontahedron.

The rhombic triacontahedron has 227 fully supported stellations.[4][5] One of the stellations of the rhombic triacontahedron is the compound of five cubes. The total number of stellations of the rhombic triacontahedron is 358833097.

Family of uniform icosahedral polyhedra
Symmetry: [5,3], (*532) [5,3]+, (532)
{5,3} t{5,3} r{5,3} t{3,5} {3,5} rr{5,3} tr{5,3} sr{5,3}
Duals to uniform polyhedra
V5.5.5 V3.10.10 V3.5.3.5 V5.6.6 V3.3.3.3.3 V3.4.5.4 V4.6.10 V3.3.3.3.5

This polyhedron is a part of a sequence of rhombic polyhedra and tilings with [n, 3] Coxeter group symmetry. The cube can be seen as a rhombic hexahedron where the rhombi are also rectangles.

Symmetry mutations of dual quasiregular tilings: V(3.n)2
*n32 Spherical Euclidean Hyperbolic
*332 *432 *532 *632 *732 *832... *∞32
Tiling
Conf. V(3.3)2 V(3.4)2 V(3.5)2 V(3.6)2 V(3.7)2 V(3.8)2 V(3.∞)2

Uses

An example of the use of a rhombic triacontahedron in the design of a lamp

Danish designer Holger Strøm used the rhombic triacontahedron as a basis for the design of his buildable lamp IQ-light (IQ for "interlocking quadrilaterals").

STL model of a rhombic triacontahedral box made of six panels around a cubic hole – zoom into the model to see the hole from the inside

Woodworker Jane Kostick builds boxes in the shape of a rhombic triacontahedron.[6] The simple construction is based on the less than obvious relationship between the rhombic triacontahedron and the cube.

Roger von Oech's "Ball of Whacks" comes in the shape of a rhombic triacontahedron.

The rhombic triacontahedron is used as the "d30" thirty-sided die, sometimes useful in some roleplaying games or other places.

See also

References

  1. ^ Stephen Wolfram, "[1]" from Wolfram Alpha. Retrieved 7 January 2013.
  2. ^ "How to make golden rhombohedra out of paper".
  3. ^ Dissection of the rhombic triacontahedron
  4. ^ Pawley, G. S. (1975). "The 227 triacontahedra". Geometriae Dedicata. 4 (2–4). Kluwer Academic Publishers: 221–232. doi:10.1007/BF00148756. ISSN 1572-9168. S2CID 123506315.
  5. ^ Messer, P. W. (1995). "Stellations of the rhombic triacontahedron and Beyond". Structural Topology. 21: 25–46.
  6. ^ triacontahedron box - KO Sticks LLC

Read other articles:

Pascal Feindouno Feindouno con la maglia della Guinea nel 2006 Nazionalità  Guinea Altezza 176 cm Peso 69 kg Calcio Ruolo Attaccante Termine carriera 1⁰ luglio 2016 Carriera Giovanili 1996-1997 Kamsar1998 Hirondelles Squadre di club1 1998-2001 Bordeaux39 (3)2001-2002 Lorient30 (6)2002-2004 Bordeaux102 (21)2004-2008 Saint-Étienne171 (49)2008-2010 Al-Sadd24 (11)2009-2010→  Al-Rayyan14 (5)2010→  Al-Nassr5 (2)2011 Monaco5 (0)2011-2012...

 

У Вікіпедії є статті про інших людей із прізвищем Осипов.Осипов Альберт НиканоровичДата народження 25 червня 1936(1936-06-25) (87 років)Місце народження Міякинський район, Башкирська АРСР, РСФРР, СРСРГромадянство  СРСР УкраїнаAlma mater Всеросійський державний інститут кінемато

 

Political process behind the American holiday Passage of Martin Luther King Jr. DayLong titleA bill to amend title 5, United States Code, to make the birthday of Martin Luther King, Jr., a legal public holiday.Enacted bythe 98th United States CongressEffectiveJanuary 1, 1986CitationsPublic lawPub. L.Tooltip Public Law (United States) 98–144Statutes at Large97 Stat. 917CodificationU.S.C. sections amended5 U.S.C. § 6103Legislative historyIntroduced in the H...

Quincentennial historical markersThe Suluan Quincentennial markerLocation34 different sites in the PhilippinesDesignerRelief: Jonas Roces and Francis Apiles (based on sketches by muralist Derrick Macutay)TypeHistorical markersDedicated dateMagellan-Elcano expedition in the Philippine archipelago The following is a list of Quincentennial historical markers unveiled by the National Historical Commission and the National Quincentennial Committee as part of the 2021 Quincentennial Commemorat...

 

Hong Kong actor This article is about the Hong Kong actor. For the American biophysical chemist, see Sunney Chan. For the singer Sunny Chan Si-Sun, see Supper Moment. This biography of a living person needs additional citations for verification. Please help by adding reliable sources. Contentious material about living persons that is unsourced or poorly sourced must be removed immediately from the article and its talk page, especially if potentially libelous.Find sources: Sunny Chan ...

 

15th TVyNovelas AwardsDateMay 15, 1997LocationTeatro Alameda, San Ángel, México D.F.Hosted byRaúl Velasco, Marco Antonio Regil, Julissa & Liza EcheverríaMost awardsCañaveral de pasiones (10)Most nominationsLa antorcha encendida (14)Television/radio coverageNetworkCanal de las estrellas ← 14th · TVyNovelas Awards · 16th → The 15th TVyNovelas Awards were an academy of special awards to the best soap operas and TV shows. The awards ceremony took place o...

Comic album by Belgian cartoonist Hergé For other uses, see Black Island. The Black Island (L'Île noire)Cover of the English editionDate 1938 (black and white) 1943 (colour) 1966 (colour remake) SeriesThe Adventures of TintinPublisherCastermanCreative teamCreatorHergéOriginal publicationPublished inLe Petit VingtièmeDate of publication15 April 1937 – 16 June 1938LanguageFrenchTranslationPublisherMethuenDate1966Translator Leslie Lonsdale-Cooper Michael Turner Chr...

 

  لمعانٍ أخرى، طالع بلدة فالي (توضيح). بلدة فالي الإحداثيات 48°19′25″N 95°40′08″W / 48.323611111111°N 95.668888888889°W / 48.323611111111; -95.668888888889  تقسيم إداري  البلد الولايات المتحدة  التقسيم الأعلى مقاطعة مارتين، مينيسوتا  خصائص جغرافية  المساحة 33.9 ميل مربع  ارتفاع ...

 

Railway station in Kent, England This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (July 2019) (Learn how and when to remove this template message) East FarleighGeneral informationLocationEast Farleigh, MaidstoneEnglandGrid referenceTQ734536Managed bySoutheasternPlatforms2Other informationStation codeEFLClassificationDfT category F2HistoryOpened25 September 1844...

International network of companies controlled by the Safra family This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Safra Group – news · newspapers · books · scholar · JSTOR (March 2011) (Learn how and when to remove this template message) J. Safra GroupTypePrivateIndustryConglomerateHeadquartersSão Paulo, Br...

 

El Cubo de Don Sanchocomune El Cubo de Don Sancho – Veduta LocalizzazioneStato Spagna Comunità autonoma Castiglia e León Provincia Salamanca TerritorioCoordinate40°53′30.12″N 6°18′25.92″W / 40.8917°N 6.3072°W40.8917; -6.3072 (El Cubo de Don Sancho)Coordinate: 40°53′30.12″N 6°18′25.92″W / 40.8917°N 6.3072°W40.8917; -6.3072 (El Cubo de Don Sancho) Altitudine736 m s.l.m. Superficie91 km² Abitanti508 (20...

 

Квантовый газ — газ частиц или квазичастиц, подчиняющийся квантовой статистике. Свойства квантового газа зависят от степени его вырождения, характеризующегося температурой вырождения. Температура вырождения T 0 {\displaystyle T_{0}} зависит от плотности газа, T 0 ∼ N ( 2 / 3 ) m k ...

Pasukan Belanda sedang menyerbu Bone. Pada tahun 1824, serbuan oleh KNIL Belanda ke Kesultanan Bone di Sulawesi Selatan pada tahun 1824 diluncurkan. Latar belakang Setelah jatuhnya Kesultanan Gowa, Kesultanan Bone menjadi yang terkuat di seantero Sulawesi; sejak awal telah merdeka dan menyebarkan pengaruh ke seluruh negeri di Sulawesi; Kesultanan Luwu dan sejumlah negara kecil lain bersekutu dengan Bone, begitupun Kesultanan Soppeng. Setelah peralihan kekuasaan dari Inggris ke Belanda, suasan...

 

Untuk kegunaan lain, lihat Wadi (disambiguasi). Wadi al'Mujib, Yordania Wadi (Arab: وادي wādī) ialah palung sungai kering yang hanya mengandung air selama hujan lebat. Istilah wādī banyak ditemui dalam toponim bahasa Arab. Wadi cenderung dihubungkan dengan pusat populasi manusia karena tersedianya air bawah tanah. Melintasi wadi yang luas pada waktu-waktu tertentu bisa berbahaya, karena air bah yang tak terduga. Air bah seperti itu menyebabkan kematian tiap tahun di Arab Saudi dan...

 

Fictional character Olivia (Fringe) redirects here. For the episode with that title, see Olivia (Fringe episode). Fictional character Olivia DunhamFringe characterFirst appearancePilot (episode 1.01)Last appearanceAn Enemy of Fate (episode 5.13)Portrayed byAnna TorvIn-universe informationNicknameLiv, Olive (as a child)OccupationFBI agentFBI interagency liaisonMarine Corps special investigatorFamilyAll Timelines: Marilyn, deceased mother (née unknown)Unnamed father Unnamed uncle (unseen)Unnam...

Czech TV series or program OktopusGenreCrimeCreated byJosef VieweghWritten byJan Pachl, Petr HudskýDirected byJan PachlStarringMiroslav Krobot, Marika Šoposká, Kryštof HádekCountry of originCzech RepublicOriginal languageCzechNo. of seasons1No. of episodes13ProductionCinematographyMarek JandaRunning time60 minutesOriginal releaseNetworkČT1ReleaseAugust 28 (2023-08-28) –November 20, 2023 (2023-11-20) Oktopus is a Czech crime television series. The series is inspired...

 

GeneralfeldmarschallAlbrecht Graf von RoonAlbrecht von RoonLahir(1803-04-30)30 April 1803Pleushagen, PrusiaMeninggal23 Februari 1879(1879-02-23) (umur 75)Berlin, JermanPengabdian Prusia  Kekaisaran JermanDinas/cabangAngkatan Darat PrusiaLama dinas1821–PangkatGeneralfeldmarschallPerang/pertempuranPerang Schleswig Kedua, Perang Austria-Prusia, Perang Prancis-PrusiaPenghargaanPour le Mérite Ordo Elang Hitam Ordo Elang Merah Ordo Wangsa Hohenzollern Ordo Mahkota (Prusia) Or...

 

この項目では、伝説上の大陸について説明しています。同名の古代ローマの祭り・レムーリア(Lemuria)については「レムレース」を、フィリピンの政治家については「en:Jesus Crispin Remulla」をご覧ください。 レムリア(英語: Lemuria)は、イギリスの動物学者フィリップ・スクレーターが1874年に提唱した、インド洋に存在したとされる仮想の大陸[1][2]。 ま...

Temidabožica reda i pravednosti.PratiociDika.RoditeljiUran i Geja. Temida (grčki Θέμις, Thémis) je grčka Titanida, božica pravednosti, a u starorimskoj mitologiji je štovana kao Justicija. Temidino ime znači zakon prirode ili red. Po njoj je nazvan asteroid 24 Temis. Opis Temida je personifikacija reda i poretka, zakona i običaja, roditelji su joj Geja i Uran, prvi bogovi. Temida nije osvetoljubiva, već je slatkih obraza. Suci su njezine sluge (themistopoloi). Temida održava re...

 

Nemzeti Bajnokság I 2007/2008NB I 2006/2007 2008/2009 Szczegóły Państwo  Węgry Termin 20 lipca 2007 - 2 czerwca 2008 Liczba meczów 240 Liczba stadionów 16 Zwycięzca MTK Hungária FC Król strzelców Gábor Urbán (11) Sezon 2007/2008 był 105. sezonem Nemzeti Bajnokság I - najwyższej klasy rozgrywkowej na Węgrzech w piłce nożnej. czyli najwyższego poziomu piłkarskiego na Węgrzech. Rozgrywki odbyły się w terminie pomiędzy 20 lipca 2007 a 2 czerwca 2008. Liga liczyła 1...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!