Retrieval Data Structure

In computer science, a retrieval data structure, also known as static function, is a space-efficient dictionary-like data type composed of a collection of (key, value) pairs that allows the following operations:[1]

  • Construction from a collection of (key, value) pairs
  • Retrieve the value associated with the given key or anything if the key is not contained in the collection
  • Update the value associated with a key (optional)

They can also be thought of as a function for a universe and the set of keys where retrieve has to return for any value and an arbitrary value from otherwise.

In contrast to static functions, AMQ-filters support (probabilistic) membership queries and dictionaries additionally allow operations like listing keys or looking up the value associated with a key and returning some other symbol if the key is not contained.

As can be derived from the operations, this data structure does not need to store the keys at all and may actually use less space than would be needed for a simple list of the key value pairs. This makes it attractive in situations where the associated data is small (e.g. a few bits) compared to the keys because we can save a lot by reducing the space used by keys.

To give a simple example suppose video game names annotated with a boolean indicating whether the game contains a dog that can be petted are given. A static function built from this database can reproduce the associated flag for all names contained in the original set and an arbitrary one for other names. The size of this static function can be made to be only bits for a small which is obviously much less than any pair based representation.[1]

Examples

A trivial example of a static function is a sorted list of the keys and values which implements all the above operations and many more. However, the retrieve on a list is slow and we implement many unneeded operations that can be removed to allow optimizations. Furthermore, we are even allowed to return junk if the queried key is not contained which we did not use at all.

Perfect hash functions

Another simple example to build a static function is using a perfect hash function: After building the PHF for our keys, store the corresponding values at the correct position for the key. As can be seen, this approach also allows updating the associated values, the keys have to be static. The correctness follows from the correctness of the perfect hash function. Using a minimum perfect hash function gives a big space improvement if the associated values are relatively small.

XOR-retrieval

Hashed filters can be categorized by their queries into OR, AND and XOR-filters. For example, the bloom filter is an AND-filter since it returns true for a membership query if all probed locations match. XOR filters work only for static retrievals and are the most promising for building them space efficiently.[2] They are built by solving a linear system which ensures that a query for every key returns true.

Retrieval of an element

Construction

Given a hash function that maps each key to a bitvector of length where all are linearly independent the following system of linear equations has a solution :

Therefore, the static function is given by and and the space usage is dominated by which is roughly bits per key for , the hash function is assumed to be small.

A retrieval for can be expressed as the bitwise XOR of the rows for all set bits of . Furthermore, fast queries require sparse , thus the problems that need to be solved for this method are finding a suitable hash function and still being able to solve the system of linear equations efficiently.

Ribbon retrieval

Using a sparse random matrix makes retrievals cache inefficient because they access most of in a random non local pattern. Ribbon retrieval improves on this by giving each a consecutive "ribbon" of width in which bits are set at random.[2]

Using the properties of the matrix can be computed in expected time: Ribbon solving works by first sorting the rows by their starting position (e.g. counting sort). Then, a REM form can be constructed iteratively by performing row operations on rows strictly below the current row, eliminating all 1-entries in all columns below the first 1-entry of this row. Row operations do not produce any values outside of the ribbon and are very cheap since they only require an XOR of bits which can be done in time on a RAM. It can be shown that the expected amount of row operations is . Finally, the solution is obtained by backsubstitution.[3]

Applications

Hash functions that lead to insertions are used to build a perfect hash function

Approximate membership

To build an approximate membership data structure use a fingerprinting function . Then build a static function on restricted to the domain of our keys .

Checking the membership of an element is done by evaluating with and returning true if the returned value equals .

  • If , returns the correct value and we return true.
  • Otherwise, returns a random value and we might give a wrong answer. The length of the hash allows controlling the false positive rate.

The performance of this data structure is exactly the performance of the underlying static function.[4]

Perfect hash functions

A retrieval data structure can be used to construct a perfect hash function: First insert the keys into a cuckoo hash table with hash functions and buckets of size 1. Then, for every key store the index of the hash function that lead to a key's insertion into the hash table in a -bit retrieval data structure . The perfect hash function is given by .[5]

References

  1. ^ a b Stefan, Walzer (2020). Random hypergraphs for hashing-based data structures (PhD). pp. 27–30.
  2. ^ a b Dillinger, Peter C.; Walzer, Stefan (2021). "Ribbon filter: practically smaller than Bloom and Xor". arXiv:2103.02515 [cs.DS].
  3. ^ Dietzfelbinger, Martin; Walzer, Stefan (2019). "Efficient Gauss elimination for near-quadratic matrices with one short random block per row, with applications". In Bender, Michael A.; Svensson, Ola; Herman, Grzegorz (eds.). 27th Annual European Symposium on Algorithms, ESA 2019, September 9–11, 2019, Munich/Garching, Germany. LIPIcs. Vol. 144. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. pp. 39:1–39:18. arXiv:1907.04750. doi:10.4230/LIPIcs.ESA.2019.39.
  4. ^ Dietzfelbinger, Martin; Pagh, Rasmus (2008). "Succinct data structures for retrieval and approximate membership (extended abstract)". In Aceto, Luca; Damgård, Ivan; Goldberg, Leslie Ann; Halldórsson, Magnús M.; Ingólfsdóttir, Anna; Walukiewicz, Igor (eds.). Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7–11, 2008, Proceedings, Part I: Track A: Algorithms, Automata, Complexity, and Games. Lecture Notes in Computer Science. Vol. 5125. Springer. pp. 385–396. arXiv:0803.3693. doi:10.1007/978-3-540-70575-8_32. ISBN 978-3-540-70574-1.
  5. ^ Walzer, Stefan (2021). "Peeling close to the orientability threshold – spatial coupling in hashing-based data structures". In Marx, Dániel (ed.). Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10–13, 2021. Society for Industrial and Applied Mathematics. pp. 2194–2211. arXiv:2001.10500. doi:10.1137/1.9781611976465.131. ISBN 978-1-61197-646-5.

Read other articles:

Testemunhas de Jeová Religião cristã não trinitáriaDefinição básica • Doutrinas e teologiaEstrutura mundial • Congregações locais HistóriaHistória geralRegionais: Angola • Brasil • Moçambique • Portugal Sociedades usadas pelos testemunhasTorre de Vigia de Bíblias e Tratados Edições notáveisA Sentinela • Despertai! • Notícias do ReinoTradução do Novo Mundo • Estudos das EscriturasFotodrama da Criação • AnuárioProclamadores do Reino de DeusCancioneiro da...

 

 

EM EmbalmingSutradara Shinji Aoyama Produser Katsuaki Takemoto Satoru Ogura Ditulis oleh Izo Hashimoto Shinji Aoyama BerdasarkanEMoleh Saki AmemiyaPemeranReiko TakashimaYutaka MatsushigeSeijun SuzukiToshio ShibaPenata musikIsao YamadaShinji AoyamaSinematograferIhiro NishikuboPenyuntingSoichi UenoShinji AoyamaTanggal rilis 31 Juli 1999 (1999-07-31) (Japan) Durasi96 menitNegara Jepang Bahasa Jepang EM Embalming (EM エンバーミングcode: ja is deprecated , EM Enbāmingu) adal...

 

 

Aufgang Portugiesische Landschaft Die Villa Além ist das Sommerhaus von Tamara und Valerio Olgiati im Alentejo.[1] Die Villa befindet sich auf einer Anhöhe der portugiesischen Gemeinde São Francisco da Serra[2]. Das 2014 errichtete Sichtbeton-Haus erinnert von außen an einen Tempel. Die hohen Betonwände schützen gegen Stürme, die vom Atlantik kommen.[3] Der Garten mit seinen regionalen Pflanzen wurde vom Berner Landschaftsarchitekten Maurus Schifferli entworfen....

Abies pindrow Охоронний статус Найменший ризик (МСОП 3.1) Біологічна класифікація Царство: Рослини (Plantae) Клада: Судинні рослини (Tracheophyta) Клада: Голонасінні (Gymnosperms) Відділ: Хвойні (Pinophyta) Клас: Хвойні (Pinopsida) Порядок: Соснові (Pinales) Родина: Соснові (Pinaceae) Рід: Ялиця (Abies) Вид: A. pindrow Бі

 

 

12383 ЕбосіВідкриттяВідкривач Кін Ендате,Кадзуро ВатанабеМісце відкриття Обсерваторія КітаміДата відкриття 2 жовтня 1994ПозначенняТимчасові позначення 1994 TF1 1989 UP6 1998 KV35Категорія малої планети Астероїд головного поясуОрбітальні характеристики[1] Епоха 23 травня 2014 (2 ...

 

 

BMW Park Der BMW Park im August 2012 mit altem Namen Frühere Namen Olympische Basketballhalle (1972–1974)Rudi-Sedlmayer-Halle (1974–2011) Sponsorenname(n) Audi Dome (2011–2023)BMW Park (seit 2023) Daten Ort Grasweg 74Deutschland 81373 München, Bayern Koordinaten 48° 7′ 33,9″ N, 11° 31′ 31,3″ O48.12607311.525362Koordinaten: 48° 7′ 33,9″ N, 11° 31′ 31,3″ O Eigentümer Stadt München Betreiber FC Bayern Münc...

  Emperador Grabado TaxonomíaReino: AnimaliaFilo: ChordataClase: ActinopterygiiSubclase: NeopterygiiInfraclase: TeleosteiSuperorden: AcanthopterygiiOrden: PerciformesSuborden: PercoideiFamilia: LuvaridaeGénero: LuvarusRafinesque, 1810Especie: L. imperialisRafinesque, 1810[editar datos en Wikidata] El emperador (Luvarus imperialis), única especie del género Luvarus que a su vez es el único encuadrado en la familia Luvaridae, es un pez marino del orden Perciformes, especie c...

 

 

Gérard Depardieu Depardieu na 63. MFF w Cannes (2010). Imię i nazwisko Gérard Xavier Marcel Depardieu Data i miejsce urodzenia 27 grudnia 1948 Châteauroux Zawód aktor, reżyser, producent filmowy Współmałżonek Élisabeth Guignot (1970–1996; rozwód) Lata aktywności od 1964 Odznaczenia Multimedia w Wikimedia Commons Cytaty w Wikicytatach Gérard Xavier Marcel Depardieu[1] (ur. 27 grudnia 1948 w Châteauroux) – francuski aktor, producent filmowy, reżyser, restaurator, właś...

 

 

Chiếm đóng Hội đồng Lập pháp Hồng KôngNhững người biểu tình đã dựng lên biểu ngữ không có kẻ bạo loạn chỉ kẻ chuyên chế! trong hội trường của Hội đồng Lập pháp Hồng Kông. Phía sau là Không có sự rút lui!!!, khu huy Hồng Kông ở phía sau bị bôi đen, chỉ còn lại Khu hành chính đặc biệt Hồng KôngTên bản ngữ 7·1 立法會衝突Thời điểm1 tháng 7 năm 2019 – 01:00 2 tháng 7 năm 2019...

Methods of delivering voice communications and multimedia over IP networks Voice over Internet Protocol (VoIP), also called IP telephony, is a method and group of technologies for voice calls for the delivery of voice communication sessions over Internet Protocol (IP) networks, such as the Internet. The broader terms Internet telephony, broadband telephony, and broadband phone service specifically refer to the provisioning of voice and other communications services (fax, SMS, voice messaging)...

 

 

1861 painting by Édouard Manet La Nymphe surprise(Surprised Nymph)ArtistÉdouard ManetYear1861 (1861)MediumOil on canvasDimensions122 cm × 144 cm (48 in × 57 in)LocationNational Museum of Fine Arts in Buenos Aires, Buenos Aires La Nymphe surprise, or Surprised Nymph, is a painting by the French impressionist painter Édouard Manet, created in 1861. The model was Suzanne Leenhoff, a pianist whom he married two years later. The painting is a key...

 

 

Actress, dancer, film producer, screenwriter (1885–1965) Mae MurrayMurray in Photoplay, 1917BornMarie Adrienne Koenig(1885-05-10)May 10, 1885New York City, U.S.DiedMarch 23, 1965(1965-03-23) (aged 79)Woodland Hills, Los Angeles, California, U.S.Resting placeValhalla Memorial Park CemeteryOccupationsActressdancerfilm producerscreenwriterYears active1916–1931Spouses William M. Schwenker Jr. ​ ​(m. 1908; div. 1910)​ Jay O'Brien ​...

جون ماكغفرن (بالإنجليزية: John McGovern)‏    معلومات شخصية الميلاد 28 أكتوبر 1949 (العمر 74 سنة)مونتروز  مركز اللعب وسط الجنسية المملكة المتحدة  المسيرة الاحترافية1 سنوات فريق م. (هـ.) 1965–1968 هارتلبول يونايتد[أ] 72 (5) 1968–1974 ديربي كاونتي 190 (16) 1974 ليدز يونايتد 4 (0) 1975–1982 نوتينغ...

 

 

Patung dada marmer 'Matidia 1' s.119 M Gaya rambut di Romawi berubah-ubah, dan terutama pada Zaman Kekaiaran Romawi, terdapat sejumlah cara berbeda untuk merias rambut. Seperti halnya busana, terdapat beberapa gaya rambut yang dibatasi untuk orang-orang tertentu dalam masyarakat kuno. Sehingga, gaya rambut merupakan kekhasan yang membolehkan para cendekiawan saat ini untuk membuat kronologi seni rupa dan potret Romawi; mereka dapat menanggali gambar-gambar permaisuri pada koin-koin, atau meng...

 

 

SaltoIbu kota departemen LambangNegara UruguayDepartemenDepartemen SaltoDibuat1756Populasi (2011) • Total104.028 • DemonimsalteñoZona waktuUTC -3Kode pos50000Kode area telepon+598 473 (+5 digits)Situs webhttp://www.salto.gub.uy Salto merupakan kota terbesar kedua Uruguay. Penduduknya berjumlah 102.000 jiwa (2005). Artikel bertopik geografi atau tempat Uruguay ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

Cement and paper fiber This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia's guide to writing better articles for suggestions. (February 2013) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve this article by addin...

 

 

Ketela kukus. Pala pendem (ejaan tidak baku: polo pendem) dalam kebudayaan Jawa adalah berbagai macam hasil pertanian yang terpendam di dalam tanah. Beberapa contoh yang paling umum dari pala pendem meliputi tanaman umbi-umbian seperti ubi jalar, singkong, kentang, talas, dan gadung. Sering kali kacang tanah juga termasuk ke dalam kelompok pala pendem. Istilah pala pendem juga sering digunakan untuk menyebut hidangan atau jenis sesajen yang juga berisikan berbagai macam umbi-umbian. Umumnya b...

 

 

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article possibly contains original research. Please improve it by verifying the claims made and adding inline citations. Statements consisting only of original research should be removed. (January 2018) (Learn how and when to remove this template message) This article relies largely or entirely on a single source. Relevant discussion ma...

Austrian actor Eduard von WintersteinBorn(1871-08-01)1 August 1871Vienna, Austria-HungaryDied22 July 1961(1961-07-22) (aged 89)East Berlin, East GermanyYears active1919–1958Spouse(s)Minna Menger, m. (1894)ChildrenGustav von Wangenheim Eduard Clemens Franz Anna Freiherr von Wangenheim[1] (1 August 1871 – 22 July 1961), known as Eduard von Winterstein, was an Austrian-German film actor who appeared in over one hundred fifty German films during the silent and sound eras...

 

 

1998 studio album by Frank Black and the CatholicsFrank Black and the CatholicsStudio album by Frank Black and the CatholicsReleasedSeptember 9, 1998RecordedMarch 20, 1997 – March 22, 1997StudioSound City Studios, Los Angeles, CaliforniaGenreAlternative rockLength41:19LabelSpinARTProducerFrank Black and the CatholicsFrank Black and the Catholics chronology The Cult of Ray(1996) Frank Black and the Catholics(1998) Pistolero(1999) Frank Black and the Catholics is the debut album from ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!